NJCAT TECHNOLOGY VERIFICATION

Bio Clean[™] Multi-Level Screening (MLS) Inlet Filter

Performance Verification of Sediment Capture and Sediment Mass Loading

Bio Clean Environmental Services Inc.

November 2018

Contents

List	of T	Sables 3				
List	of F	Figures				
1.	Intr	oduction				
2.	Des	cription of Technology				
3.	Lab	oratory Testing				
3	.1	Test Setup				
3	.2	Test Sediment				
3	3.3 Removal Efficiency Testing					
3	.4	Sediment Mass Loading Testing				
4.	Per	formance Claims11				
5.	Sup	porting Documentation				
5	.1	Removal Efficiency				
5	.2	Sediment Mass Loading 17				
5	.3	Filter Driving Head				
6.	Mai	intenance Plans				
7.	Sca	ling 40				
8.	Stat	ements				
9.	Ref	erences				

List of Tables

Table 1 PSD of Test Sediment (Lot # 08031725360)
Table 2 Removal Efficiency Sampling Frequency 10
Table 3 Removal Efficiency Water Flow Rate 13
Table 4 Removal Efficiency Sediment Feed Rate 14
Table 5 Removal Efficiency Drain Down Losses
Table 6 Removal Efficiency SSC Data
Table 7 Removal Efficiency Results
Table 8 Sediment Mass Loading Water Flow Rate 19
Table 9 Sediment Mass Loading Sediment Feed Rate 21
Table 10 Sediment Mass Loading Drain Down Losses
Table 11 Sediment Mass Loading SSC Data 31
Table 12 Sediment Mass Loading Removal Efficiency Results
Table 13 Scaling of Bio Clean [™] MLS Filter Models
List of Figures
Figure 1 Grate Bio Clean [™] MLS Filter Illustration
Figure 2 Curb Bio Clean [™] MLS Filter Illustration
Figure 3 Catch Basin Dimensions
Figure 4 Test Flow Apparatus
Figure 5 Background Sampling Point
Figure 6 Effluent Sampling Point
Figure 7 Average Particle Size Distribution of Test Sediment
Figure 8 Sediment Captured on Catch Basin Floor
Figure 9 Removal Efficiency vs. Sediment Mass Loading for the Bio Clean TM MLS Filter 38
Figure 10 Increase in Head Loss vs. Sediment Mass Load

1. Introduction

The Bio CleanTM Multi-Level Screening (MLS) Filter for curb and grate inlets is a filtration manufactured treatment device (MTD) designed by Bio Clean Environmental Services Inc., a Forterra Company. The Bio CleanTM MLS Filter is designed to remove pollutants from stormwater runoff entering catch basins. The test program was conducted by Good Harbour Laboratories (GHL), an independent water technology testing lab based in Ontario, Canada. The study results were submitted to the New Jersey Corporation for Advanced Technology (NJCAT) for verification. NJCAT is a private/public partnership that provides independent technology verification, education and information on emerging environmental and energy technology fields. This testing program was based primarily on the *New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January 25, 2013)*. However, the particle size distribution (PSD) of the test sediment used is larger than what is required for NJDEP certification. This larger PSD is common in many regions throughout the nation and thus is more applicable in these areas. **The performance test results have been submitted to NJCAT for verification only.**

2. Description of Technology

The Bio Clean^{$^{\text{TM}}$} MLS Filter is a first line of defense for treatment of polluted stormwater runoff. The filter system is designed to capture fine to coarse sediments, floatable trash, debris and hydrocarbons conveyed in stormwater runoff. Constructed of 100% high grade stainless steel, it has an 8-year warranty. The multi-level screen configuration provides a balance between flow rate capacity and capture of particulate pollutants such as TSS, and particle bound pollutants such as metals and nutrients. The finest screens are located on the bottom and lower sides of the filter. Moving upward, the screens go from fine to medium-fine, medium and coarse in mesh size allowing the filter to continue to operate and retain larger trash and debris during high flow conditions (**Figures 1 and 2**). The filter is equipped with unimpeded high flow bypass for large storm events and a floating hydrocarbon boom for the capture and retention of oils and grease.

The Bio Clean[™] MLS Filter is designed for insertion into existing and new curb and grated type inlets, including combination types. The Bio Clean[™] MLS Filter comes in standard sizes and depths but is also offered in custom configurations making it adaptable to regional standards throughout the United States and worldwide. Depths as shallow as 6 inches can be accommodated though flow capacity is reduced. These filters are designed to mount either on the grate flange, under mounted, or in curb inlets with a shelf system. Sizing of the filter is based upon both the treatment and bypass flow rates of the catch basin. Flow rate capacity varies based upon the size/model of the filter. Installation is quick and easy, and all filters are removable as required for access into the catch basin below. Designed with fast and efficient maintenance in mind, the filter can be power washed and vacuumed out using a standard vac truck and 8" metal hose extension.



Figure 1 Grate Bio Clean[™] MLS Filter Illustration

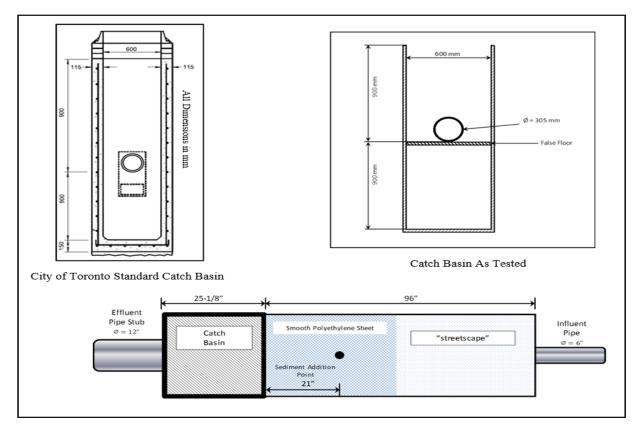


Figure 2 Curb Bio Clean[™] MLS Filter Illustration

3. Laboratory Testing

In commercial systems, the filter would typically be fitted inside of a concrete catch basin. For the purposes of laboratory testing, the test apparatus consisted of a simulated City of Toronto catch basin that was constructed out of wood. Using a wooden catch basin in lieu of concrete did not have an impact on system performance. The catch basin had a false floor installed at the invert of a 12["] effluent pipe, eliminating any sump in the catch basin. This type of construction is representative of catch basins located in various regions in the United States such as in southern California. The dimensions of the catch basin are shown in **Figure 3**. The catch basin was covered with a typical City of Toronto grate that was constructed out of PVC rather than metal.

To simulate the sheet flow of water observed as stormwater runoff enters a catch basin, this study pumped water on to a "streetscape", a plywood sheet 8 ft. long and 2 ft. wide, that directed the water flow to the catch basin grate. The streetscape was sloped towards the catch basin with a 1.5% slope.

Figure 3 Catch Basin Dimensions

3.1 Test Setup

The laboratory test setup was a water flow loop comprised of water reservoirs, pumps, sediment filter, receiving tank and flow meters. The test flow apparatus is shown in **Figure 4**.

From the water supply tanks, water was pumped using a WEG Model FC00312 (1 – 200 gpm) centrifugal pump. Flow measurement was done using a 3" Toshiba Model GF630 electromagnetic type flow meter with an accuracy of $\pm 0.5\%$ of reading. Flow measurements were recorded using

a flow data logger, a MadgeTech Process 101A, configured to record a flow measurement once every minute.

The water in the flow loop was circulated through a filter housing containing high-efficiency pleated bag filters with a 0.5 μ m absolute rating and then pumped onto the streetscape where the challenge sediment was added.

The test sediment was dropped onto the streetscape by means of an auger feeder (Auger Feeders Model VF-1 volumetric screw feeder). The sediment was added onto the center of the streetscape, approximately 21 inches upstream of the catch basin. The streetscape was painted with a waterproofing resin to prevent water leaks. To ensure that any sediment added onto the streetscape flowed into the catch basin, the floor of the streetscape underneath the sediment addition point was lined with a smooth polyethylene sheet. Baffles were also placed on the streetscape to direct water towards the sediment and help wash it onto the catch basin. Visually, no sediment remained on the streetscape at the end of each run.

Figure 4 Test Flow Apparatus

The sediment loaded water flowed into the catch basin and was treated by a Bio Clean MLS Inlet Filter model # BIO-GRATE-MLS-24-24-24. The water exited the catch basin through the effluent pipe where it terminated with a free fall into a receiving tank.

Sample Collection

Background water samples were collected in 1L jars from a sampling port located upstream of the streetscape. The sampling port was controlled manually by a ball valve (**Figure 5**) that was opened approximately 5 seconds prior to sampling.

Effluent samples were also grabbed by hand. The effluent pipe drained freely into the Receiving Tank and the effluent sample was taken at that point (**Figure 6**). The sampling technique was to

take the grab sample by sweeping a wide-mouth 1 L jar through the stream of effluent flow such that the jar was full after a single pass.

Figure 5 Background Sampling Point

Figure 6 Effluent Sampling Point

Other Instrumentation and Measurement

Water level and temperature in the Bio Clean[™] MLS Filter were taken using a Solinst 3001 Levelogger, configured to take a reading once every 10 seconds. The level logger was set in the filter basket during each run.

Run and sampling times were measured using a NIST traceable stopwatch, Control Company Model 62379-460.

The sediment feed samples that were taken during the run were collected in 500 mL jars and weighed on an analytical balance (Mettler Toledo, AB204-S).

3.2 Test Sediment

The test sediment used for this study was the #100 - 140 silica blend supplied by AGSCO Corporation, lot # 08031725360. Eight 50-lbs. bags of sediment were used for this study. To determine the particle size distribution (PSD) of the sediment, three replicate composite samples were prepared by collecting a sample from each of the eight bags.

The PSD was determined by GHL using the methodology of ASTM method D422-63 (2007), *Standard Test Method for Particle-Size Analysis of Soils*. Since the PSD of the sediment was expected to have a very low fraction below 75 μ m, no hydrometer testing was performed. The test results are summarized in **Table 1** and shown graphically in **Figure 7**.

The three replicate composite samples were also analyzed for moisture content by GHL based on ASTM Method D4959-07, *Standard Test Method for Determination of Water (Moisture) Content of Soil by Direct Heating*. The results were all below the Method Detection Limit (MDL) of 0.068%.

Particle Size	Test Se	Test Sediment Particle Size (% Less Than)									
(Microns)	Sample 1	Sample 2	Sample 3	Average							
1000	100.00	100.00	100.00	100.00							
850	100.00	100.00	100.00	100.00							
425	99.74	99.77	99.78	99.76							
250	91.70	92.48	92.26	92.15							
212	78.01	80.60	80.10	79.57							
150	36.85	40.93	38.65	38.81							
106	5.09	5.80	5.42	5.44							
75	0.67	0.83	0.71	0.74							
d ₅₀	170 µm	164 µm	167 µm	167 µm							

Table 1 PSD of Test Sediment (Lot # 08031725360)

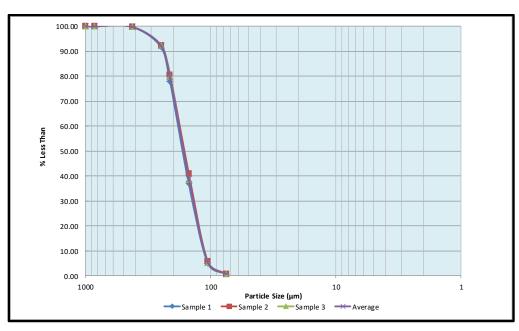


Figure 7 Average Particle Size Distribution of Test Sediment

3.3 Removal Efficiency Testing

Removal Efficiency Testing was conducted primarily based on Section 5 of the NJDEP Laboratory Protocol for Filtration MTDs. Testing was conducted at a flow rate of 0.223 cfs (100 gpm) and a target influent sediment concentration of 200 mg/L.

Effluent grab samples were taken 6 times per run (at evenly spaced intervals), with each run lasting 13 minutes in duration, followed by a drain down period. In addition to the effluent samples, background samples were taken with every odd-numbered effluent sample (1st, 3rd and 5th). As the filtration MTD did not have a sump, there was no minimum detention time requirement; however, a 2-minute interval was used to allow the system to establish equilibrium once sediment addition began. When the test sediment feed was interrupted for measurement, the next effluent sample was collected following the 2-minute delay. Sampling times for Removal Efficiency testing are summarized in **Table 2**. Effluent and background samples were collected in clean 1L wide-mouth jars.

Three sediment feed samples were collected during each run to confirm the sediment feed rate, one sample at the start of dosing, one sample in the middle of the test run and one sample just prior to the conclusion of dosing. Each sediment feed rate sample was a minimum of 100 mL and collected in a clean 500 mL jar. Sediment sampling was timed to the nearest 1/100th of a second using a calibrated stop watch and samples were weighed to the nearest 0.1 mg.

Sample/		Run Time (min.)								
Measurement Taken	0	2	4	6	8	10	12	E N	13.5	
Sediment Feed	X			Х			Х	D		
Effluent		X	Х	Х	Х	X	Х	O F		
Background		X		Х		X		R		
Drain down								U N	X	

Table 2 Removal Efficiency Sampling Frequency

An effluent drain down sample was collected at the end of each removal efficiency run, 30 seconds after the pump had been switched off, to estimate the amount of sediment lost during the drain down period. As the filter had no sump, the drain down period lasted less than 1 minute, however this did increase as sediment began to collect in the filter over time. Because it was not physically possible to directly measure the water level inside of the filter during the run to adjust the timing of the drain down sample, the sampling time was held at 30 seconds. This was considered a worst-case scenario as the sediment concentration tends to decrease over time. By basing the drain-down concentration on the 30 second sample, the drain-down sediment concentration was being over-estimated.

3.4 Sediment Mass Loading Testing

The Sediment Mass Loading Capacity of the filter was determined as a continuation of the Removal Efficiency testing. All aspects of the test procedure remained the same except that the target influent sediment concentration was increased from 200 to 400 mg/L. Sediment Mass Loading Capacity testing began after 12 runs of Removal Efficiency testing had been completed.

4. Performance Claims

The following are the performance claims made and/or established via the laboratory testing conducted on the Bio CleanTM (BC) MLS Inlet Filter Model # BIO-GRATE-MLS-24-24-24 (BC MLS Filter Model 24-24-24).

Verified Total Suspended Solids (SSC) Removal Rate

Based on the laboratory testing conducted, the BC MLS Filter Model 24-24-24 achieved an overall removal efficiency of 86.6% of the test sediment (d_{50} of 167 μ m) prior to reaching the sediment mass loading capacity.

Tested Treatment Flow Rate (TTFR)

The BC MLS Filter Model 24-24-24 was tested at a flow rate of 0.223 cfs (100 gpm) which corresponds to a filtration treatment area ratio, based on a total screen surface area of 7.52 ft², of 0.030 cfs/ft² (13.3 gpm/ft²).

Effective Treatment/Sedimentation Area

The BC MLS Filter Model 24-24-24 had a maximum operating head of 19-1/3" during testing. This correlates to an active filtration screen area of 6.85 ft² (91% of total screen surface area).

Detention Time and Wet Volume

The BC MLS Filter Model 24-24-24 does not have a sump; the detention time and wet volume will vary with time and will increase as sediment accumulates in the filter.

Sediment Mass Loading Capacity

The sedimentation mass loading capacity of the BC MLS Filter Model 24-24-24 was determined to be 199.3 lbs.

On-line/Off-line Installation

At this time no scour testing has been performed; therefore, the BC MLS Filter Model 24-24-24 would only qualify for off-line use.

Maximum Allowable Inflow Drainage Area

Varies based on region, treatment intensities, and loading conditions.

5. Supporting Documentation

The NJDEP Procedure (NJDEP 2013a) for obtaining verification of a stormwater manufactured treatment device (MTD) from the New Jersey Corporation for Advanced Technology (NJCAT) requires that "copies of the laboratory test reports, including all collected and measured data; all data from performance evaluation test runs; spreadsheets containing original data from all performance test runs; all pertinent calculations; etc." be included in this section. This was discussed with NJDEP and it was agreed that as long as such documentation could be made available by NJCAT upon request that it would not be prudent or necessary to include all this information in this verification report.

5.1 Removal Efficiency

A total of 12 removal efficiency testing runs were completed in accordance with the NJDEP filter protocol. The target flow rate and influent sediment concentration were 100 gpm and 200 mg/L respectively. The results from all 12 runs were used to calculate the overall removal efficiency of the Bio CleanTM MLS Filter Model 24-24-24.

Flow Rate

The flow rate was measured using a mag-type flow meter and data logger configured to take a reading once every minute. For each run, the flow rate was to be maintained within 10% of the target flow with a COV (coefficient of variation) less than 0.03.

The flow data has been summarized in **Table 3**, including the compliance to the QA/QC acceptance criteria. The average flow for all removal efficiency runs was 99.9 gpm.

Sediment Addition

The target sediment concentration was 200 ± 20 mg/L with a COV less than 0.10. The sediment feed rate for each run was checked three times during each run. The average influent sediment concentration for each test flow was determined by mass balance. The amount of sediment fed into the auger feeder and the amount remaining at the end of a run was used to determine the amount of sediment fed. The sediment mass was corrected for the mass of the three feed rate samples taken during the run. The mass of the sediment fed was divided by the volume of water that flowed through the Bio CleanTM MLS Filter during dosing to determine the average influent sediment concentration for each run.

The sediment weight checks, feed rates, final concentrations and compliance to QA/QC criteria are summarized in **Table 4**.

Filter Drain Down

The Bio CleanTM MLS Filter has a post-operation drain down. As per the NJDEP protocol, the amount of sediment that escapes the filter during the drain down period must be accounted for.

The volume of water in the Bio Clean[™] MLS Filter was determined by:

Water Volume = $H_W \times A_M$

where,

 H_W = the height of the water measured in filter basket

 A_M = the horizontal area of the filter basket

The effluent sample taken during the drain down period was analysed for SSC to permit estimation of the amount of sediment that was lost during drain down. The sampling data for the drain down periods are presented in **Table 5**.

	.		Water Flo	ow Rate	QA/QC	Max. Water	
Run #	Runtime (min)	Target (gpm)	Actual (gpm)	% Diff.	COV	Compliance (COV < 0.03)	Temperature (°F)
1	13	100	99.9	-0.09	0.021	PASS	68.3
2	13	100	100.2	0.15	0.011	PASS	59.7
3	13	100	99.8	-0.24	0.003	PASS	59.8
4	13	100	99.7	-0.29	0.002	PASS	59.9
5	13	100	99.9	-0.11	0.002	PASS	67.0
6	13	100	100.3	0.28	0.004	PASS	60.0
7	13	100	99.6	-0.36	0.001	PASS	60.1
8	13	100	100.4	0.41	0.003	PASS	60.1
9	13	100	99.7	-0.34	0.002	PASS	60.2
10	13*	100	100.0	-0.01	0.002	PASS	60.3
11	13	100	100.0	-0.01	0.006	PASS	68.6
12	13	100	99.7	-0.29	0.001	PASS	60.4

Table 3 Removal Efficiency Water Flow Rate

* During this run, the auger feeder was accidentally turned off after the calibration sample was taken at 6 min. The feeder was restarted after 40 s and the total run time was extended for an additional 40 s to compensate for the error. This run was excluded from the removal efficiency calculation however the sediment mass added during the run was counted towards the total sediment mass loading.

Table 4 Removal Efficiency Sediment Feed Rate

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance [∆]	Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance [∆]																									
	0	77.8757	60.03	77.84				0	75.8534	58.87	77.31																											
	6	77.6554	59.84	77.86	207.0	DASS	7	6	77.4033	59.94	77.48																											
1	12	78.3844	59.85	78.58	207.0	PASS	7	12	77.9078	59.97	77.95	206.1	PASS																									
	COV			0.005				COV			0.004																											
	0	74.5232	59.06	75.71				0	77.0070	59.75	77.33																											
	6	76.7232	59.91	76.84	204.9	PASS	0	6	77.5926	59.93	77.68																											
2	12	77.6241	60.03	77.59	204.9		PASS	PASS	PASS	PASS	8	12	77.9256	59.78	78.21	205.8	PASS																					
	COV			0.012				COV			0.006																											
	0	78.7362	59.90	78.87		PASS	9	0	78.5645	59.88	78.72		PASS																									
	6	79.5072	59.78	79.80	211.4			6	79.2303	59.88	79.39	210.2																										
3	12	78.9541	59.84	79.17	211.4		9	12	79.2232	59.97	79.26																											
	COV			0.006				COV			0.004																											
	0	76.4556	59.81	76.70		D. CC	DACC 10	0	79.6390	59.65	80.11																											
	6	78.0102	59.87	78.18	205.0			6	80.3972	59.97	80.44																											
4	12	78.2965	59.93	78.39	205.9 PASS	205.9 PASS	PASS	PASS	9 PASS	205.9 PASS	PA55	PASS	r Abb	r Abb	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS	1 A55	1 ASS	PASS	PASS	PASS	10	12	79.7222	59.87	79.90	215.3	PASS
	COV			0.012				COV			0.003																											
	0	74.3597	59.72	74.71				0	73.8021	58.94	75.13																											
	6	75.2255	59.91	75.34	200.9	PASS	11	6	76.4815	60.00	76.48																											
5	12	75.9134	59.82	76.14	200.9	PASS	11	12	76.4698	59.87	76.64	202.6	PASS																									
	COV			0.010				COV			0.011																											
	0	75.9855	59.18	77.04				0	75.1635	59.90	75.29		PASS																									
	6	77.0631	59.84	77.27	2017	DASS	12	6	74.9842	59.97	75.02																											
6	12	78.2478	59.87	78.42	204.7	PASS	S 12	12	76.1754	60.13	76.01	199.6																										
	COV			0.010				COV			0.007																											

* Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Maximum Water Level (inches)	Total Water Volume (L)	Average Sediment Concentration of Drain Down Samples (mg/L)	Total Sediment Lost (g)
1	0.973	5.0	4.7	0.024
2	1.231	6.3	2.0	0.013
3	1.806	9.3	4.1	0.038
4	2.127	11.0	4.2	0.046
5	7.538	38.8	2.0	0.078
6	7.363	37.9	2.0	0.076
7	8.059	41.5	2.0	0.083
8	8.880	45.7	2.0	0.091
9	9.042	46.6	2.0	0.093
10	9.052	46.6	2.7	0.126
11	9.336	48.1	2.0	0.096
12	9.169	47.2	2.0	0.094

Table 5 Removal Efficiency Drain Down Losses

Removal Efficiency Calculations

All of the effluent and background samples for SSC were analysed by Good Harbour Laboratories utilizing ASTM D3977-97 "*Standard Test Methods for Determining Sediment Concentration in Water Samples*". The results are summarized in **Table 6**.

The required background SSC concentration was < 20 mg/L. The limit of quantitation for the analytical method was 2.3 mg/L. For the purposes of calculation, any result that was reported as being below the limit of quantitation (<LOQ), was assigned a value of 2 mg/L. The adjusted average sediment concentration was determined by:

Average effluent concentration – Average background concentration

	Susp	ended S	Sedimer	nt Conc	entratio	on, SSC	(mg/L))	QA/QC Compliance
Run #	Run Time (min)	2	4	6	8	10	12	Average	(background SSC < 20 mg/L)
1	Background	2		2		2		2	YES
1	Effluent	13.0	8.1	11.0	20.1	18.7	18.0	14.8	
2	Background	2		2		2		2	YES
2	Effluent	14.0	30.9	20.5	11.0	13.0	18.2	17.9	
3	Background	2		2		2		2	YES
3	Effluent	7.6	13.0	13.0	12.0	12.0	10.0	11.3	
4	Background	2		2		2		2	YES
4	Effluent	6.1	8.7	11.0	15.3	12.0	13.4	11.1	
5	Background	2		2		2		2	YES
5	Effluent	20.8	25.8	14.0	17.0	18.3	15.3	18.5	
6	Background	2		2		2		2	YES
6	Effluent	3.7	2.5	7.2	3.5	2	2.5	3.6	
7	Background	2		2		2		2	YES
/	Effluent	6.4	7.4	4.6	2.7	2.8	4.6	4.8	
8	Background	2		2		2		2	YES
8	Effluent	4.9	4.4	2.3	2.4	3.6	2	3.3	
9	Background	2		2		2		2	YES
9	Effluent	4.4	2.4	3.0	2	2.3	2.5	2.8	
10	Background	2		2		2		2	YES
10	Effluent	5.2	2.4	3.3	3.0	2	2	3.0	
11	Background	2		2		2		2	YES
11	Effluent	3.5	3.2	3.2	2.4	2	2.6	2.8	
10	Background	2		2		2		2	YES
12	Effluent	3.6	2	2.4	2	3.1	2	2.5	

Table 6 Removal Efficiency SSC Data

The analytical results, along with the run data, were used to calculate the removal efficiency for each run, mass loading and overall removal efficiency average; the results are tabulated in **Table 7.** The removal efficiency was calculated as:

$$Removal \ Efficiency \ (\%) = \frac{\begin{pmatrix} Average \ Influent \\ SS \ Concentration \ X \\ Total \ Volume \\ of \ Test \ Water \end{pmatrix}}{Average \ Influent \ SS \ Concentration \ X \\ Total \ Volume \\ of \ Drain \ down \ How \\ SS \ Concentration \ X \\ Total \ Volume \\ of \ Drain \ down \ Water \end{pmatrix}} \times 100$$

Run #	Avg. Influent SSC (mg/L)	Adjusted Effluent SSC (mg/L)	Total Water Volume (L)	Average Drain Down SSC (mg/L)	Volume of Drain Down Water (L)	Removal Efficiency (%)	Mass of Captured Sediment (Lbs.)				
1	207.0	12.8	3773	4.7	5.0	93.8	1.615				
2	204.9	15.9	3787	2.0	6.3	92.2	1.578				
3	211.4	9.3	3774	4.1	9.3	95.6	1.682				
4	205.9	9.1	3774	4.2	11.0	95.6	1.638				
5	200.9	16.5	3781	2.0	38.8	91.8	1.538				
6	204.7	1.6	3804	2.0	37.9	99.2	1.704				
7	206.1	2.8	3779	2.0	41.5	98.7	1.694				
8	205.8	1.3	3803	2.0	45.7	99.4	1.714				
9	210.2	0.8	3773	2.0	46.6	99.6	1.742				
10	215.3	1.0	3787	2.7	46.6	99.5	1.789				
11	202.6	0.8	3792	2.0	48.1	99.6	1.687				
12	199.6	0.5	3775	2.0	47.2	99.7	1.657				
	Average Removal Efficiency*										
		Captured	Sediment Mass			20.0 lbs.					

Table 7 Removal Efficiency Results

*Excludes Run #10

The overall average removal efficiency was 96.8% for the first 12 runs. During the Removal Efficiency testing, 20 pounds of sediment was captured in the Bio CleanTM MLS Filter.

5.2 Sediment Mass Loading

The Sediment Mass Loading Capacity testing was a continuation of the Removal Efficiency testing. All aspects of the testing remained the same, except that the feed concentration was increased to 400 mg/L, up from the 200 mg/L used for the Removal Efficiency testing. The sediment mass loading continued for an additional 7 runs at which point testing was stopped because of time constraints.

Following a 2-month break, the mass loading was resumed. During the break, the sediment in the catch basin remained undisturbed. An additional 54 mass loading runs were completed for a total of 73 runs. The Bio CleanTM MLS Filter performance did not meet the criteria for terminating the mass loading test as specified in the NJCAT test protocol. The test was stopped early because the filter had demonstrated sufficient capacity to ensure that the filter installation would not be limited by sediment loading.

For Runs 13-73, the mass loading water flow rates, sediment feed rates, drain down loses, SSC data and removal efficiencies are presented in **Table 8** to **Table 12** respectively.

The total mass of sediment captured in the Bio Clean[™] MLS Filter was 202 lbs. and the overall removal efficiency was 87.6% (**Table 12**). The relationship between removal efficiency and sediment mass loading is shown in **Figure 9** (page 38).

It was observed that there was a wide variation in effluent sediment concentration within some runs. For example, during Run # 38, the following effluent concentrations were reported: effluent sample #3 - 37.1 mg/L, effluent sample #4 - 172.7 mg/L, and effluent sample #5 - 27.1 mg/L. No correction was made to the average effluent concentration when this occurred; the effluent spikes were included in the performance calculations as a worst-case scenario.

The reason for such variable concentrations was opined to be an occasional washout of sediment that was deposited beneath the Bio CleanTM MLS Filter in the catch basin. The catch basin used for the study did not have a sump to retain this material which allowed for this occasional washout. The Bio CleanTM MLS Filter was very effective at dissipating the energy of the falling water. As a result, sediment settled and accumulated on the floor of the catch basin, as shown in **Figure 8**. At the end of testing, the sediment was collected, dried and weighed. The weight of sediment was 2.7 lbs, which results in an adjusted amount of sediment captured of 199.3 lbs and an adjusted overall removal efficiency of 86.6%.

Figure 8 Sediment Captured on Catch Basin Floor

			Water Flo	w Rate		QA/QC	Max. Water
Run #	Runtime (min)	Target (gpm)	Actual (gpm)	% Diff.	cov	Compliance (COV < 0.03)	Temperature (°F)
13	13	100	100.7	0.66	0.002	Pass	60.5
14	13	100	99.7	-0.29	0.002	Pass	60.5
15	13	100	100.5	0.53	0.001	Pass	60.6
16	13	100	101.7	1.71	0.002	Pass	61.0
17	13	100	101.0	0.96	0.002	Pass	64.6
18	13	100	101.4	1.35	0.002	Pass	59.1
19	13	100	101.4	1.44	0.002	Pass	59.2
20	13	100	99.7	-0.26	0.002	Pass	73.9
21	13	100	100.3	0.25	0.003	Pass	67.0
22	13	100	99.7	-0.26	0.002	Pass	67.2
23	13	100	99.8	-0.25	0.003	Pass	67.1
24	13	100	99.6	-0.36	0.002	Pass	71.5
25	13	100	99.9	-0.06	0.003	Pass	68.0
26	13	100	100.3	0.30	0.003	Pass	68.1
27	13	100	100.4	0.37	0.004	Pass	68.3
28	13	100	99.8	-0.17	0.001	Pass	68.3
29	13	100	99.9	-0.11	0.002	Pass	75.9
30	13	100	100.5	0.49	0.002	Pass	70.7
31	13	100	100.1	0.14	0.002	Pass	70.8
32	13	100	100.4	0.41	0.002	Pass	70.7
33	13	100	99.9	-0.14	0.002	Pass	70.7
34	13	100	100.0	-0.04	0.002	Pass	70.7
35	13	100	100.1	0.10	0.003	Pass	78.8
36	13	100	100.7	0.69	0.001	Pass	71.3
37	13	100	100.2	0.19	0.002	Pass	71.2
38	13	100	100.0	0.04	0.006	Pass	71.1
39	13	100	100.4	0.44	0.003	Pass	71.1
40	13	100	100.2	0.24	0.005	Pass	71.0
41	13	100	99.9	-0.08	0.002	Pass	75.9
42	13	100	100.5	0.49	0.003	Pass	71.2

 Table 8 Sediment Mass Loading Water Flow Rate

			Water Flo	w Rate		QA/QC	Max. Water
Run #	Runtime (min)	Target (gpm)	Actual (gpm)	% Diff.	cov	Compliance (COV < 0.03)	Temperature (°F)
43	13	(gpiii) 100	(gpiii) 100.4	0.39	0.001	(COV < 0.03) Pass	(F) 71.1
44	13	100	100.4	0.35	0.001	Pass	71.1
44	13	100	100.3	0.25	0.003	Pass	74.8
40	13	100	100.3	0.25	0.002	Pass	74.8
40	13	100	100.4	0.50	0.002	Pass	71.5
47	13	100	100.5	0.53	0.002	Pass	71.4
48	13	100	100.5	0.17	0.002	Pass	71.3
50	13	100	100.2	0.17	0.001	Pass	71.2
50	13	100	100.5	0.46	0.002	Pass	75.9
			100.4			Pass	
52	13	100		0.35	0.002		71.4
53	13	100	100.3	0.28	0.002	Pass	71.3
54	13	100	100.7	0.65	0.002	Pass	71.2
55	13	100	100.4	0.44	0.002	Pass	71.1
56	13	100	100.6	0.58	0.003	Pass	71.0
57	13	100	100.6	0.59	0.002	Pass	73.3
58	13	100	100.8	0.75	0.002	Pass	70.5
59	13	100	100.4	0.39	0.002	Pass	70.5
60	13	100	100.4	0.41	0.002	Pass	70.5
61	13	100	100.5	0.53	0.002	Pass	70.5
62	13	100	100.7	0.66	0.001	Pass	71.7
63	13	100	100.4	0.36	0.002	Pass	69.5
64	13	100	100.7	0.66	0.002	Pass	69.5
65	13	100	100.4	0.39	0.002	Pass	69.4
66	13	100	100.6	0.60	0.002	Pass	69.4
67	13	100	100.4	0.36	0.002	Pass	69.4
68	13	100	100.4	0.44	0.002	Pass	72.0
69	13	100	100.3	0.31	0.002	Pass	69.9
70	13	100	100.4	0.44	0.002	Pass	69.8
71	13	100	100.4	0.41	0.001	Pass	69.7
72	13	100	100.4	0.38	0.002	Pass	69.7
73	13	100	100.5	0.49	0.002	Pass	69.7

Table 8 Cont'd

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance ^{Δ}	
	0	152.2234	59.78	152.78			
12	6	153.8062	60.00	153.81	407.6		
13	12	155.8470	60.00	155.85	407.6	Yes	
	COV			0.010			
	0	153.3801	59.81	153.87			
14	6	154.8873	59.81	155.38	411.0	V	
14	12	155.8917	59.88	156.20	411.0	Yes	
	COV			0.008			
	0	157.9079	59.72	158.65			
15	6	159.8469	59.93	160.03	400.0	37	
15	12	160.6890	59.69	161.52	422.3	Yes	
	COV			0.009			
	0	153.6775	59.60	154.71			
16	6	155.3389	60.00	155.34	402.7	37	
16	12	156.1118	59.78	156.69	403.7	Yes	
	COV			0.006			
	0	149.2514	59.78	149.80			
17	6	150.4473	60.00	150.45	204.0	V	
17	12	149.3137	59.94	149.46	394.0	Yes	
	COV			0.003			
	0	148.0615	59.85	148.43			
10	6	147.5142	59.91	147.74	406.7	37	
18	12	149.4875	59.88	149.79	406.7	Yes	
	COV			0.007			
	0	147.7006	60.00	147.70			
10	6	150.4889	59.90	150.74	202.9	V	
19	12	150.8665	59.82	151.32	393.8	Yes	
	COV			0.013			
	0	142.2774	58.97	144.762			
20	6	143.8857	59.85	144.246	296.2	V	
20	12	143.5221	59.97	143.594	386.3	Yes	
	COV			0.004			

Table 9 Sediment Mass Loading Sediment Feed Rate

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 - 220 mg/L and COV < 0.1

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance ^{Δ}
	0	144.6368	59.00	147.088		
-	6	145.5989	59.87	145.915		
21	12	142.9191	59.93	143.086	383.4	Yes
	COV			0.014		
	0	147.0387	60.03	146.965		
ľ	6	146.7221	60.12	146.429		
22	12	145.2337	59.97	145.306	388.0	Yes
-	COV			0.006		
	0	144.9429	59.91	145.161		
-	6	143.8966	60.03	143.825		
23	12	142.7005	59.97	142.772	380.9	Yes
ľ	COV			0.008		
	0	143.5259	59.63	144.416		Yes
	6	142.4922	59.88	142.778		
24	12	141.1655	59.93	141.330	382.5	
	COV			0.011		
	0	142.8673	58.91	145.511		Yes
25	6	143.7350	59.87	144.047	277.7	
25	12	142.4651	59.88	142.751	377.7	
	COV			0.010		
	0	158.4479	59.91	158.686		
26	6	158.8272	59.90	159.092	117.6	V
26	12	157.2129	59.97	157.292	417.6	Yes
	COV			0.006		
	0	157.2364	59.03	159.820		
27	6	160.7948	60.19	160.287	420.7	Vac
27	12	159.7519	59.91	159.992	420.7	Yes
	COV			0.001		
	0	160.6420	59.93	160.830		
28	6	157.7979	59.78	158.379	400 7	V
28	12	157.2945	59.94	157.452	420.7	Yes
Ē	COV			0.011		

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance [∆]
	0	153.5223	59.03	156.045		
20	6	154.0616	59.90	154.319	411.4	
29	12	154.0469	60.03	153.970	411.4	Yes
	COV			0.007		
	0	157.3605	58.97	160.109		
20	6	156.6209	59.22	158.684	410.0	37
30	12	158.2445	60.03	158.165	419.9	Yes
	COV			0.006		
	0	158.7294	59.72	159.474		
21	6	157.2062	60.00	157.206	100 6	37
31	12	158.4495	60.00	158.450	420.6	Yes
	COV			0.007		
	0	159.1804	59.78	159.766		Yes
22	6	159.2462	59.78	159.832	410.5	
32	12	157.1043	60.13	156.765	419.5	Yes
	COV			0.011		
	0	156.8975	59.85	157.291		Yes
22	6	157.8254	60.09	157.589	400.0	
33	12	154.4244	59.88	154.734	422.2	
	COV			0.010		
	0	157.3926	59.88	157.708		
	6	154.9466	59.85	155.335		
34	12	155.2679	59.90	155.527	411.7	Yes
	COV			0.008		
	0	157.8292	59.87	158.172		
25	6	159.6461	59.90	159.913	100 6	V
35	12	158.7748	60.00	158.775	420.6	Yes
F	COV			0.006		
	0	162.1631	59.84	162.597		
	6	161.0520	59.91	161.294	101.0	¥.
36	12	160.2726	60.00	160.273	421.3	Yes
ŀ	COV			0.007		

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance [∆]
	0	155.4016	58.87	158.385		
37	6	158.7076	59.94	158.866	422.8	
37	12	158.5914	60.28	157.855	422.8	Yes
	COV			0.003		
	0	156.3193	59.84	156.737		
20	6	158.5133	59.90	158.778	4167	V
38	12	155.6039	60.07	155.423	416.7	Yes
	COV			0.011		
	0	161.8018	59.82	162.289		
20	6	160.5071	59.81	161.017	421.2	V
39	12	157.8718	59.78	158.453	421.2	Yes
	COV			0.012		
	0	158.0608	59.96	158.166		Yes
40	6	157.8214	59.84	158.243	415.0	
40	12	156.3638	59.90	156.625	415.9	Yes
	COV			0.006		
	0	160.0230	59.72	160.773		Yes
41	6	158.2916	60.00	158.292	421.6	
41	12	156.9173	59.88	157.232	421.6	
	COV			0.011		
	0	158.9289	59.75	159.594		
10	6	159.2821	59.85	159.681	440.0	
42	12	157.5232	59.94	157.681	419.0	Yes
	COV			0.007		
	0	158.3744	59.84	158.798		
40	6	156.1816	59.97	156.260	412.0	V
43	12	156.0488	60.06	155.893	412.8	Yes
	COV			0.010		
	0	157.3251	59.00	159.992		
	6	158.1512	59.94	158.310		
44	12	158.6881	59.87	159.033	421.2	Yes
	COV			0.005		

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance ^{Δ}
	0	159.1182	59.90	159.384		
15	6	157.5362	59.97	157.615	110.0	V
45	12	156.2102	60.00	156.210	418.0	Yes
	COV			0.010		
	0	158.8482	59.75	159.513		
16	6	158.1052	60.00	158.105	414.0	V
46	12	156.9006	59.91	157.136	414.9	Yes
-	COV			0.008		
	0	159.1052	59.87	159.451		
47	6	156.8836	59.90	157.146	412.5	V
47	12	155.8384	59.94	155.994	413.5	Yes
-	COV			0.011		
	0	156.6709	59.71	157.432		Yes
40	6	155.2676	60.00	155.268	411.6	
48	12	155.6656	60.03	155.588	411.6	Yes
-	COV			0.007		
	0	159.1107	59.87	159.456		Yes
40	6	157.7215	59.94	157.879	417.0	
49	12	156.3686	59.97	156.447		
-	COV			0.010		
	0	159.3636	59.75	160.030		
70	6	158.6036	59.91	158.842	101 5	
50	12	157.8249	59.94	157.983	421.7	Yes
	COV			0.006		
	0	158.1396	59.87	158.483		
~ 1	6	157.0296	59.91	157.265	114.2	V
51	12	155.2062	59.96	155.310	414.3	Yes
	COV			0.010		
	0	157.6154	59.78	158.195		
	6	155.2219	59.90	155.481	100.1	v
52	12	151.2090	59.84	151.613	408.4	Yes
	COV			0.021		

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance ^{Δ}
	0	156.4064	59.88	156.720		
52	6	157.1320	59.97	157.211	412.0	V
53	12	153.2497	59.94	153.403	412.9	Yes
-	COV			0.013		
	0	157.9417	59.93	158.126		
54	6	154.9051	59.96	155.008	412.0	V
54	12	155.0222	60.00	155.022	412.8	Yes
-	COV			0.012		
	0	159.5976	59.88	159.917		
	6	158.0736	59.87	158.417	417.0	V
55	12	157.0261	59.97	157.105	417.0	Yes
-	COV			0.009		
	0	155.3062	58.87	158.287		Yes
54	6	156.5550	59.85	156.947	415.0	
56	12	155.8510	59.81	156.346	415.0	Yes
-	COV			0.006		
	0	152.1920	58.94	154.929		Yes
57	6	153.0459	59.90	153.301	405.7	
57	12	152.8484	59.97	152.925	405.7	
-	COV			0.007		
	0	155.6767	59.06	158.154		
	6	156.0560	59.97	156.134	414.5	V
58	12	155.0744	59.87	155.411	414.5	Yes
-	COV			0.009		
	0	155.4493	58.87	158.433		
	6	157.4718	59.87	157.814	415.4	V
59	12	154.8352	60.00	154.835	415.4	Yes
ŀ	COV			0.012		
	0	159.6384	59.81	160.146		
	6	157.1373	59.97	157.216	417.0	v
60	12	156.8322	60.00	156.832	415.8	Yes
ŀ	COV			0.011		

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance ^{Δ}
	0	157.9606	59.72	158.701		
61	6	156.7077	59.97	156.786	115 7	
61	12	156.8162	60.00	156.816	415.7	Yes
	COV			0.007		
	0	153.4021	59.03	155.923		
(2)	6	155.3993	60.00	155.399	410.2	V
62	12	155.3890	59.91	155.622	410.2	Yes
	COV			0.002		
	0	157.8493	59.81	158.351		
(2)	6	155.5198	60.16	155.106	414.9	V
63	12	155.2624	59.90	155.522	414.8	Yes
	COV			0.011		
	0	158.0604	59.81	158.563		Yes
<i>c</i> 1	6	155.7644	60.00	155.764	416.0	
64	12	155.8193	59.94	155.975	416.0	Yes
	COV			0.010		
	0	156.8835	59.85	157.277		Yes
<u> </u>	6	156.2461	59.91	156.481	4167	
65	12	157.8223	60.15	157.429	416.7	
	COV			0.003		
	0	158.9536	59.88	159.272		
	6	156.3964	59.96	156.501		
66	12	156.4041	59.88	156.718	412.9	Yes
	COV			0.010		
	0	156.9761	59.84	157.396		
<i>(</i> 7	6	155.4800	60.00	155.480	110.0	V
67	12	153.5228	59.97	153.600	410.0	Yes
	COV			0.012		
	0	158.1377	59.81	158.640		
~	6	154.2770	59.75	154.923	110 -	v
68	12	155.2960	59.94	155.451	413.5	Yes
	COV	- 		0.013		

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Run Time (min)	Weight (g)	Duration (s)	Feed Rate (g/min)	Conc.* (mg/L)	QA/QC Compliance ^{Δ}	
	0	158.7824	59.78	159.367			
(0)	6	157.9253	60.00	157.925	417.0	V	
69	12	156.0956	60.07	155.914	417.8	Yes	
	COV			0.011			
	0	159.3646	59.87	159.711			
70	6	157.2761	59.91	157.512	413.8	Yes	
70	12	155.4203	59.84	155.836	413.8	res	
	COV			0.012			
	0	157.2593	59.84	157.680		Yes	
71	6	155.4672	59.88	155.779	412.9		
/1	12	153.5096	59.78	154.075	412.9		
	COV			0.012			
	0	156.7835	59.84	157.203			
72	6	155.7410	59.91	155.975	412.2		
72	12	156.6542	59.97	156.733	413.2	Yes	
	COV			0.004			
	0	159.1429	59.91	159.382			
72	6	157.0586	60.00	157.059	410.5	V	
73	12	155.5408	59.93	155.722	412.5	Yes	
	COV			0.012			

 $^{^*}$ Based on sediment mass balance and average water flow rate $^{\Delta}$ Average concentration 180 – 220 mg/L and COV < 0.1

Run #	Maximum Water Level (inches)	Total Water Volume	Average Sediment Concentration of Drain Down Samples	Total Sediment Lost
	(menes)	(L)	(mg/L)	(g)
13	12.055	62.1	2.0	0.124
14	11.660	60.0	3.0	0.180
15	11.812	60.8	6.8	0.414
16	9.835	50.6	13.1	0.663
17	12.820	66.0	12.2	0.805
18	13.410	69.0	19.8	1.367
19	13.534	69.7	20.1	1.401
20	13.667	70.4	29.9	2.104
21	14.306	73.7	49.2	3.624
22	14.846	76.4	78.0	5.962
23	15.076	77.6	59.1	4.587
24	15.722	80.9	51.1	4.136
25	15.281	78.7	56.4	4.437
26	15.704	80.8	65.3	5.279
27	16.019	82.5	79.4	6.548
28	16.079	82.8	63.5	5.256
29	15.423	79.4	58.6	4.653
30	15.716	80.9	60.0	4.855
31	16.335	84.1	84.8	7.131
32	16.126	83.0	69.2	5.745
33	16.566	85.3	59.3	5.057
34	16.603	85.5	56.2	4.804
35	16.601	85.5	72.3	6.179
36	16.613	85.5	75.0	6.415

Table 10 Sediment Mass Loading Drain Down Losses

Run #	Maximum Water Level (inches)	Total Water Volume (L)	Average Sediment Concentration of Drain Down Samples (mg/L)	Total Sediment Lost (g)
37	16.854	86.8	71.2	6.178
38	16.234	83.6	73.2	6.118
39	16.841	86.7	75.2	6.520
40	16.704	86.0	59.1	5.082
41	16.472	84.8	62.5	5.300
42	17.093	88.0	87.5	7.700
43	17.380	89.5	89.2	7.981
44	18.104	93.2	91.1	8.490
45	17.969	92.5	55.2	5.107
46	18.013	92.7	88.4	8.198
47	18.089	93.1	74.9	6.975
48	18.051	92.9	58.7	5.455
49	18.137	93.4	94.7	8.842
50	18.137	93.4	63.0	5.882
51	17.401	89.6	77.4	6.934
52	18.164	93.5	67.0	6.265
53	18.284	94.1	104.0	9.790
54	18.301	94.2	151.4	14.264
55	18.343	94.4	92.6	8.745
56	18.373	94.6	97.0	9.175
57	17.793	91.6	130.3	11.935
58	18.183	93.6	67.8	6.347
59	18.178	93.6	139.4	13.045
60	18.449	95.0	125.0	11.872

Table 10 Cont'd

Run #	Maximum Water Level (inches)	Total Water Volume (L)	Average Sediment Concentration of Drain Down Samples (mg/L)	Total Sediment Lost (g)
61	18.267	94.0	89.7	8.436
62	18.395	94.7	59.2	5.606
63	18.906	97.3	122.0	11.875
64	19.005	97.8	133.5	13.062
65	18.931	97.5	81.0	7.894
66	18.953	97.6	109.0	10.636
67	19.078	98.2	111.0	10.902
68	18.497	95.2	115.0	10.951
69	18.933	97.5	82.6	8.051
70	19.102	98.3	66.0	6.491
71	19.189	98.8	104.0	10.274
72	19.276	99.2	238.8	23.698
73	19.333	99.5	390.3	38.846

Table 10 Cont'd

Table 11 Sediment Mass Loading SSC Data

	Susp	QA/QC Compliance							
Run #	Run Time (min)	2	4	6	8	10	12	Average	(background SSC < 20 mg/L)
13	Background	2		2		2		2	YES
15	Effluent	5.6	3.8	4.3	2.3	3.8	10.0	5.0	
14	Background	2		2		2		2	YES
14	Effluent	11.0	5.2	5.0	2.8	5.5	17.4	7.8	
15	Background	2		2		2		2	YES
15	Effluent	6.0	2.8	11.0	13.2	21.2	27.5	13.6	
16	Background	2		2		2		2	YES
16	Effluent	7.8	12.0	19.0	17.2	17.6	22.1	16.0	

	Susp	ended S	Sedime	nt Conc	entrati	on, SSC	(mg/L))	QA/QC Compliance
Run #	Run Time (min)	2	4	6	8	10	12	Average	(background SSC < 20 mg/L)
17	Background	2		2		2		2	YES
17	Effluent	12.0	13.0	18.7	21.8	21.5	23.9	18.5	
10	Background	2		2		2		2	YES
18	Effluent	25.5	22.7	29.9	23.2	22.0	21.5	24.1	
10	Background	2		2		2		2	YES
19	Effluent	28.8	27.6	30.8	25.5	21.6	25.9	26.7	
20	Background	2		2		2		2	YES
20	Effluent	22.9	33.4	23.3	37.7	32.1	33.4	30.5	
21	Background	2		2		2		2	YES
21	Effluent	75.2	53.2	26.9	40.6	42.5	40.5	46.5	
22	Background	2		2		2		2	YES
22	Effluent	83.3	45.6	34.9	30.4	29.8	32.3	42.7	
22	Background	2		2		2		2	YES
23	Effluent	32.6	37.1	39.4	28.7	44.5	33.8	36.0	
24	Background	2		2		2		2	YES
24	Effluent	41.6	29.7	33.0	24.9	35.8	33.9	33.2	
25	Background	2		2		2		2	YES
25	Effluent	34.2	31.3	47.1	44.4	32.4	28.5	36.3	
26	Background	2		2		2		2	YES
26	Effluent	41.8	47.5	39.6	32.5	43.0	28.4	38.8	
27	Background	2		2		2		2	YES
27	Effluent	61.7	41.7	31.3	26.4	36.1	27.0	37.4	
28	Background	2		2		2		2	YES
28	Effluent	43.9	38.9	54.8	31.0	24.2	31.3	37.4	
29	Background	2		2		2		2	YES
29	Effluent	38.8	33.2	40.9	25.3	26.0	26.3	31.8	
20	Background	2		2		2		2	YES
30	Effluent	54.4	56.7	42.0	21.9	26.9	42.6	40.8	
21	Background	2		2		2		2	YES
31	Effluent	64.5	32.7	38.2	35.2	37.1	42.9	41.8	
20	Background	2		2		2		2	YES
32	Effluent	71.6	63.1	56.6	42.6	29.6	28.2	48.6	

Table 11 Cont'd

	Su	spended	Sedim	ent Conc	entrati	on, SSC ((mg/L)		QA/QC Compliance
Run #	Run Time (min)	2	4	6	8	10	12	Average	(background SSC < 20 mg/L)
22	Background	2		2		2		2	YES
33	Effluent	45.4	33.1	44.6	36.5	48.3	24.5	38.7	
24	Background	2		2		2		2	YES
34	Effluent	47.0	37.1	34.8	33.7	36.4	24.4	35.6	
25	Background	2		2		2		2	YES
35	Effluent	64.7	43.5	41.8	27.6	24.6	21.0	37.2	
24	Background	2		2		2		2	YES
36	Effluent	33.6	28.1	49.5	30.5	26.3	31.8	33.3	
27	Background	2		2		2		2	YES
37	Effluent	34.3	43.0	32.8	35.4	26.2	22.7	32.4	
20	Background	2		2		2		2	YES
38	Effluent	38.0	53.4	45.8	37.1	172.7	27.1	62.4	
20	Background	2		2		2		2	YES
39	Effluent	29.3	46.9	29.1	40.5	27.6	29.6	33.8	
40	Background	2		2		2		2	YES
40	Effluent	57.5	43.0	42.3	86.7	33.7	31.3	49.1	
4.1	Background	2		2		2		2	YES
41	Effluent	32.0	56.1	59.4	35.6	33.0	38.0	42.4	
42	Background	2		2		2		2	YES
42	Effluent	47.8	38.0	36.7	40.2	34.8	28.4	37.7	
42	Background	2		2		2		2	YES
43	Effluent	53.7	48.7	34.8	34.0	37.2	29.4	39.6	
44	Background	2		2		2		2	YES
44	Effluent	56.2	44.9	33.7	34.6	28.7	27.9	37.7	
15	Background	2		2		2		2	YES
45	Effluent	75.7	44.3	121.3	36.0	24.6	45.2	57.9	
16	Background	2		2		2		2	YES
46	Effluent	98.5	63.8	51.8	36.5	19.2	33.6	50.6	
17	Background	2		2		2		2	YES
47	Effluent	93.6	55.2	58.1	32.4	59.2	31.1	54.9	
10	Background	2		2		2		2	YES
48	Effluent	98.6	53.3	120.9	43.7	53.0	39.9	68.2	

Table 11 Cont'd

		Suspende	ed Sedim	ent Conc	entratio	n, SSC (r	ng/L)		QA/QC Compliance
Run #	Run Time (min)	2	4	6	8	10	12	Average	(background SSC < 20 mg/L)
10	Background	2		2		2		2	YES
49	Effluent	69.4	63.6	54.8	29.3	95.4	36.4	58.2	
50	Background	2		2		2		2	YES
50	Effluent	69.8	90.7	27.5	66.9	37.5	32.2	54.1	
F 1	Background	2		2		2		2	YES
51	Effluent	52.3	56.7	116.0	33.1	27.0	45.8	55.2	
50	Background	2		2		2		2	YES
52	Effluent	86.6	51.2	82.2	40.1	47.9	31.8	56.6	
	Background	2		2		2		2	YES
53	Effluent	58.8	74.2	91.6	33.9	37.3	43.4	56.5	
	Background	2		2		2		2	YES
54	Effluent	43.8	102.0	78.4	54.2	45.1	44.8	61.4	
	Background	2		2		2		2	YES
55	Effluent	74.4	262.1	35.3	39.1	33.7	46.1	81.8	
	Background	2		2		2		2	YES
56	Effluent	67.6	72.0	38.6	39.2	54.7	54.4	54.4	
	Background	2		2		2		2	YES
57	Effluent	102.0	66.5	62.9	50.5	41.0	46.3	61.5	
50	Background	2		2		2		2	YES
58	Effluent	78.0	47.6	40.0	61.2	77.6	68.7	62.2	
50	Background	2		2		2		2	YES
59	Effluent	75.4	70.9	57.2	51.9	87.4	55.6	66.4	
(0)	Background	2		2		2		2	YES
60	Effluent	95.8	71.5	60.9	62.7	73.9	65.1	71.7	
<i>c</i> 1	Background	2		2		2		2	YES
61	Effluent	125.7	135.0	59.7	60.4	50.5	66.8	83.0	
<i>(</i>)	Background	2		2		2		2	YES
62	Effluent	152.8	77.8	119.0	109.0	97.8	99.8	109.4	
(2)	Background	2		2		2		2	YES
63	Effluent	113.0	105.0	105.0	154.6	89.6	112.0	113.2	
<i>C</i> A	Background	2		2		2		2	YES
64	Effluent	126.4	127.8	95.2	113.0	130.4	134.5	121.2	

Table 11 Cont'd

	Sı	ispendeo	d Sedim	ent Con	centratio	on, SSC	(mg/L)		QA/QC Compliance
Run #	Run Time (min)	2	4	6	8	10	12	Average	(background SSC < 20 mg/L)
65	Background	2		2		2		2	YES
65	Effluent	79.0	106.0	101.0	68.3	121.3	106.0	96.9	
	Background	2		2		2		2	YES
66	Effluent	105.0	126.2	104.0	132.2	95.1	104.0	111.1	
67	Background	2		2		2		2	YES
07	Effluent	94.1	108.0	100.0	110.0	74.5	92.3	96.5	
<u>(9</u>	Background	2		2		2		2	YES
68	Effluent	103.0	126.0	133.7	98.7	112.0	149.1	120.4	
69	Background	2		2		2		2	YES
09	Effluent	110.0	122.0	97.6	83.2	71.8	99.1	97.3	
70	Background	2		2		2		2	YES
70	Effluent	111.0	91.5	97.8	74.7	87.4	119.0	96.9	
71	Background	2		2		2		2	YES
/1	Effluent	106.0	126.3	114.0	113.0	76.2	78.7	102.4	
72	Background	2		2		2		2	YES
72	Effluent	139.3	97.7	151.4	120.0	87.5	116.0	118.7	
72	Background	2		2		2		2	YES
73	Effluent	115.0	105.0	106.0	113.0	100.0	93.7	105.5	

Table 11 Cont'd

Table 12 Sediment Mass Loading Removal Efficiency Results

	Avg. Influent	Adjusted Effluent	Total Water	Average Drain Down	Volume of Drain Down	Removal Ef	ficiency (%)	Mass Loading (Lbs.)	
Run #	SSC (mg/L)	SSC (mg/L)	Volume (L)	SSC (mg/L)	Water (L)	Individual	Cumulative	Individual	Cumulative
13	407.6	3.0	3811	2.0	62.1	99.3	97.4	3.399	23.437
14	411.0	5.8	3774	3.0	60.0	98.6	97.5	3.371	26.808
15	422.3	11.6	3805	6.8	60.8	97.3	97.5	3.445	30.253
16	403.7	14.0	3852	13.1	50.6	96.5	97.4	3.310	33.563
17	394.0	16.5	3822	12.2	66.0	95.8	97.3	3.182	36.745
18	406.7	22.1	3836	19.8	69.0	94.6	97.1	3.252	39.997
19	393.8	24.7	3837	20.1	69.7	93.7	96.8	3.123	43.120
20	386.3	28.5	3780	29.9	70.4	92.6	96.5	2.982	46.102

Table 12 Cont'd

	Avg. Influent	Adjusted Effluent	Total Water	Average Drain Down	Volume of Drain Down	Removal Ef	ficiency (%)	Mass Loa	ding (Lbs.)
Run #	SSC (mg/L)	SSC (mg/L)	Volume (L)	SSC (mg/L)	Water (L)	Individual	Cumulative	Individual	Cumulative
21	383.4	44.5	3800	49.2	73.7	88.4	96.0	2.838	48.940
22	388.0	40.7	3779	78.0	76.4	89.3	95.6	2.887	51.827
23	380.9	34.0	3777	59.1	77.6	90.9	95.4	2.884	54.710
24	382.5	31.2	3772	51.1	80.9	91.7	95.2	2.918	57.629
25	377.7	34.3	3788	56.4	78.7	90.8	94.9	2.864	60.493
26	417.6	36.8	3797	65.3	80.8	91.0	94.7	3.182	63.675
27	420.7	35.4	3809	79.4	82.5	91.4	94.6	3.227	66.903
28	420.7	35.4	3778	63.5	82.8	91.5	94.4	3.204	70.107
29	411.4	29.8	3788	58.6	79.4	92.6	94.3	3.182	73.289
30	419.9	38.8	3805	60.0	80.9	90.7	94.2	3.194	76.482
31	420.6	39.8	3793	84.8	84.1	90.3	94.0	3.177	79.659
32	419.5	46.6	3801	69.2	83.0	88.8	93.8	3.120	82.780
33	422.2	36.7	3780	59.3	85.3	91.2	93.7	3.208	85.988
34	411.7	33.6	3783	56.2	85.5	91.7	93.6	3.149	89.137
35	420.6	35.2	3789	72.3	85.5	91.4	93.6	3.213	92.349
36	421.3	31.3	3813	75.0	85.5	92.3	93.5	3.270	95.620
37	422.8	30.4	3802	71.2	86.8	92.6	93.5	3.281	98.901
38	416.7	60.4	3790	73.2	83.6	85.5	93.2	2.976	101.876
39	421.2	31.8	3799	75.2	86.7	92.2	93.2	3.252	105.128
40	415.9	47.1	3793	59.1	86.0	88.6	93.1	3.082	108.211
41	421.6	40.4	3783	62.5	84.8	90.3	93.0	3.175	111.386
42	419.0	35.7	3805	87.5	88.0	91.2	92.9	3.206	114.592
43	412.8	37.6	3801	89.2	89.5	90.6	92.9	3.134	117.726
44	421.2	35.7	3801	91.1	93.2	91.2	92.8	3.219	120.945
45	418.0	55.9	3797	55.2	92.5	86.6	92.7	3.032	123.977
46	414.9	48.6	3799	88.4	92.7	88.1	92.5	3.060	127.036
47	413.5	52.9	3804	74.9	93.1	87.1	92.4	3.020	130.056
48	411.6	66.2	3808	58.7	92.9	84.0	92.2	2.901	132.957
49	417.0	56.2	3793	94.7	93.4	86.3	92.1	3.010	135.967
50	421.7	52.1	3804	63.0	93.4	87.6	92.0	3.097	139.064
51	414.3	53.2	3801	77.4	89.6	87.0	91.9	3.021	142.086
52	408.4	54.6	3797	67.0	93.5	86.5	91.7	2.959	145.045

Table 12 Cont'd

	Avg. Influent	Adjusted Effluent	Total Water	Average Drain Down	Volume of Drain Down	Removal Ef	ficiency (%)	Mass Loa	ding (Lbs.)
Run #	SSC (mg/L)	SSC (mg/L)	Volume (L)	SSC (mg/L)	Water (L)	Individual	Cumulative	Individual	Cumulative
53	412.9	54.5	3798	104.0	94.1	86.5	91.6	2.990	148.036
54	412.8	59.4	3809	151.4	94.2	85.1	91.5	2.948	150.984
55	417.0	79.8	3801	92.6	94.4	80.8	91.3	2.824	153.807
56	415.0	52.4	3812	97.0	94.6	87.1	91.2	3.038	156.846
57	405.7	59.5	3813	130.3	91.6	84.9	91.1	2.896	159.741
58	414.5	60.2	3819	67.8	93.6	85.4	91.0	2.982	162.723
59	415.4	64.4	3809	139.4	93.6	84.1	90.8	2.932	165.656
60	415.8	69.7	3803	125.0	95.0	82.9	90.7	2.891	168.546
61	415.7	81.0	3809	89.7	94.0	80.5	90.5	2.809	171.355
62	410.2	107.4	3817	59.2	94.7	74.1	90.2	2.559	173.914
63	414.8	111.2	3800	122.0	97.3	73.1	89.9	2.541	176.455
64	416.0	119.2	3811	133.5	97.8	71.3	89.6	2.490	178.945
65	416.7	94.9	3801	81.0	97.5	77.3	89.4	2.700	181.645
66	412.9	109.1	3810	109.0	97.6	73.6	89.1	2.552	184.197
67	410.0	94.5	3803	111.0	98.2	76.9	88.9	2.641	186.839
68	413.5	118.4	3802	115.0	95.2	71.4	88.6	2.474	189.313
69	417.8	95.3	3799	82.6	97.5	77.3	88.4	2.704	192.017
70	413.8	94.9	3801	66.0	98.3	77.2	88.2	2.679	194.696
71	412.9	100.4	3799	104.0	98.8	75.7	88.1	2.617	197.313
72	413.2	116.7	3802	238.8	99.2	71.0	87.8	2.459	199.771
73	412.5	103.5	3802	390.3	99.5	73.1	87.6	2.527	202.299
		Aver	age Run Remo	oval Efficiency (Runs 1 – 73):			87.	6 %
		(Captured Sedin	nent Mass (Run	s 1 – 73):			202	lbs.

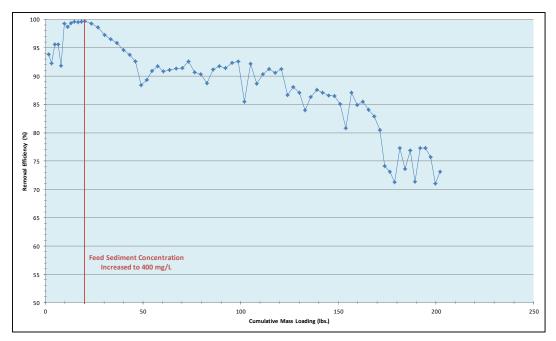


Figure 9 Removal Efficiency vs. Sediment Mass Loading for the Bio Clean[™] MLS Filter

5.3 Filter Driving Head

The water level in the Bio Clean^{$^{\text{M}}$} MLS Filter, as measured with the level data logger, has been reported in **Table 5** and **Table 10**. Figure 10 illustrates the increase in water level inside the filter as sediment is captured.

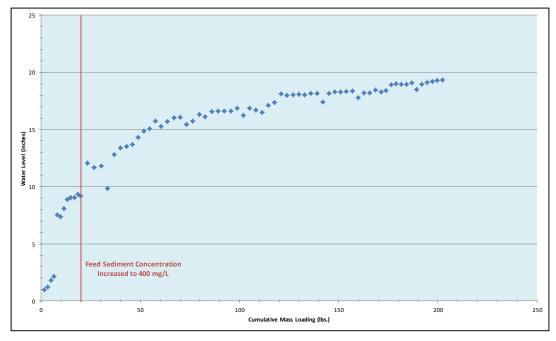


Figure 10 Increase in Head Loss vs. Sediment Mass Load

6. Maintenance Plans

The Bio CleanTM MLS Filter Operations and Maintenance Manual is available at: <u>http://www.biocleanenvironmental.com/wp-content/uploads/2018/11/Operations-Maintenance-Grate-Inlet-Filter-MLS-Type.pdf</u>

Inspection Equipment

The following is a list of equipment used to allow for simple and effective inspection of the Bio CleanTM MLS Filter. It is recommended that a vacuum truck be utilized to minimize the time required to maintain the CBF, though it can easily be cleaned by hand:

- Bio Clean Environmental Maintenance Form (contained in O&M Manual).
- Manhole hook or appropriate tools to remove access hatches and covers (e.g., grates).
- Appropriate traffic control signage and procedures.
- Protective clothing and eye protection.
- Note: entering a confined space requires appropriate safety and certification. It is generally not required for routine maintenance of the system. A small or large vacuum truck, with pressure washer attachment, is preferred.

Inspection Procedures

The core to any successful stormwater BMP maintenance program is routine inspections. The inspection steps required on the Bio CleanTM MLS Filter are quick and easy. The first year should be seen as the maintenance interval establishment phase. During the first year more frequent inspections should occur in order to gather loading data and maintenance requirements for that specific site. This information can be used to establish a base for long-term inspection and maintenance interval requirements.

The Bio Clean[™] MLS Filter can be inspected though visual observation. All necessary preinspection steps must be carried out before inspection occurs, such as safety measures to protect the inspector and nearby pedestrians from any dangers associated with an open grated or curb inlet. Once the grate or manhole has been safely removed the inspection process can proceed.

- Prepare the inspection form by writing in the necessary information including project name, location, date & time, unit number and other info (see inspection form).
- Observe the filter with the grate removed.
- Look for any out of the ordinary obstructions on the grate, catch basin or in the filter and its bypass. Write down any observations on the inspection form.
- Through observation and/or digital photographs estimate the amount of trash, foliage and sediment accumulated inside the filter basket. Record this information on the inspection form.
- Observe the condition and color of the hydrocarbon boom. Record this information on the inspection form.
- Finalize inspection report for analysis by the maintenance manager to determine if maintenance is required.

Based upon observations made during inspection, maintenance of the system may be required based on the following indicators:

- Missing or damaged internal components.
- Obstructions in the filter basket and its bypass.
- Excessive accumulation of trash, foliage and sediment in the filter basket. (Note. Maintenance is required when the basket is greater than half-full).

Maintenance Procedures

It is recommended that maintenance occurs at least two days after the most recent rain event to allow debris and sediments to dry out. Maintaining the system while flows are still entering it will increase the time and complexity required for maintenance. Cleaning of the Bio CleanTM MLS Filter can be performed utilizing a vacuum truck. Once all safety measures have been set up, cleaning of the filter can proceed as follows:

- Remove grate or manhole (traffic control and safety measures to be completed prior).
- Using an extension on a vacuum truck, position the hose over the opened catch basin. Insert the vacuum hose down into the filter basket and suck out trash, foliage and sediment. A pressure wash is recommended and will assist in spraying off any debris stuck on the side or bottom of the filter basket. Power wash off the filter basket sides and bottom.
- Next remove the hydrocarbon boom that is attached to the inside of the filter basket. Assess the color and condition of the boom. If replacement is required install and fasten on a new hydrocarbon boom. Booms can be ordered directly from the manufacturer.
- The last step is to replace the grate or manhole and remove all traffic control.
- All removed debris and pollutants shall be disposed of following local and state requirements.
- Disposal requirements for recovered pollutants may vary depending on local guidelines. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as hazardous waste.

In the case of damaged components, replacement parts can be ordered from the manufacturer. Hydrocarbon booms can also be ordered directly from the manufacturer as previously noted.

7. Scaling

Based on the test results of the Bio CleanTM Multi-Level Screening (MLS) Inlet Filter (Model BIO-GRATE-MLS -24-24-24) the MTFR of other model sizes has been determined based on the verified loading rate of 13.3 gpm/ft² of total screen surface area as shown in **Table 13**.

Model Number ¹	Filter Diameter (ft)	Filter Height (ft)	Total Screen Surface Area (ft ²)	Loading Rate ² (gpm/ft ²)	MTFR ³ (gpm)	MTFR (cfs)
BIO-GRATE -MLS-12-12-18	0.833	1.5	0.88	13.3	12	0.03
BIO-GRATE-MLS-18-18-18	1.333	1.5	3.56	13.3	47	0.11
BIO-CURB-MLS 20-24	1.5	2	5.92	13.3	79	0.18
BIO-GRATE-MLS-24-24-24	1.75	2	7.52	13.3	100	0.22
BIO-GRATE-MLS-30-30-24	2.25	2	10.78	13.3	143	0.32
BIO-GRATE-MLS-25-38-24	2.0	2	9.88	13.3	131	0.29
BIO-GRATE-MLS-36-36-24	2.75	2	14.45	13.3	192	0.43
BIO-GRATE-MLS-48-48-18	3.667	1.5	18.35	13.3	244	0.54

Table 13 Scaling of Bio Clean[™] MLS Filter Models

 First two numbers of model number for grate types designate size of mounting flange in inches. Last number designates filter depth in inches. For curb type the first number designates flange diameter and second the filter depth. Other models available. Please contact manufacturer for available sizes and associated flow rates.
 Based on tested flow rate of 100 gpm for the BIO-GRATE-MLS-24-24-24.

3. MTFR for shallower or deeper filters will be based upon 13.3 gpm/sq. ft of the total screen surface area.

8. Statements

The following attached pages are signed statements from the manufacturer (Bio Clean Environmental, Inc.), the testing lab (Good Harbour Labs), and NJCAT. These statements are a requirement of the verification process.

July 18, 2018

Dr. Richard Magee, ScD., P.E., BCEE Executive Director, New Jersey Corporation for Advanced Technology

Re: Performance Verification of the Bio Clean™ Catch Basin Filter

Dear Dr. Magee,

Good Harbour Laboratories was contracted by Bio Clean Environmental Services Inc., A Forterra Company, to conduct a performance verification of their Catch Basin Filter in accordance, as nearly as possible, with New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January, 2013). The Catch Basin Filter is a slightly different application from a more typical vault filter and it was tested with a coarser material than specified in the protocol so the results are not intended for certification by the New Jersey Department of Environmental Protection (NJDEP). The D₃₀ of the tested sediment was 167 µm.

Good Harbour Laboratories is an independent hydraulic test facility located in Mississauga, Ontario Canada. I certify that we have evaluated the Bio Clean™ Catch Basin Filter from March 21-26 and May 24-June 11, 2018 according to the aforementioned test protocol. The results presented in the NJCAT Verification Report dated July, 2018 are accurate and all procedures and requirements stated in the test protocol were met or exceeded, with the exception noted previously. Good Harbour Laboratories has no vested interest in the test results or financial conflict of interest in providing independent testing services to BioClean Environmental Services Inc.

Sincerely,

Dr. Greg Wilkams, P.Eng. Managing Director, Good Harbour Laboratories

Date 7/17/2018

To Whom It May Concern,

We are providing this letter as our statement certifying that the protocol titled New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January 25, 2013) has been strictly followed with these exceptions. A larger particle size distribution (PSD) was used having a mean of 167 microns (d50) which replicates a size more commonly found as an influent entering catch basins on roadways and parking lots.

With exception of the above deviations, we certify that all requirements and criteria were met and/or exceeded during testing of the Bio Clean™ Catch Basin Filter.

If you have any questions please contact us at your convenience.

Sincerely,

Zachariha J. Kent Vice President of Research & Development and Regulatory Compliance Bio Clean, a Forterra Company.

Zal/an Signature:

Date: <u>7/17/2018</u>

P O Box 869 Oceanside CA 92049 (760) 433-7640 • Fax (760) 433-3176 www.BioCleanEnvironmental.net

Center for Environmental Systems Stevens Institute of Technology One Castle Point Hoboken, NJ 07030-0000

September 4, 2018

Mr. Zach J. Kent VP of Product Development & Regulatory Compliance Bio Clean Environmental Services Inc. 398 Via El Centro Oceanside, CA 92058

Dear Mr. Kent,

Based on my review, evaluation and assessment of the testing on the Bio Clean[™] MLS Filter conducted by Good Harbour Laboratories, Ltd., Mississauga, Ontario, Canada, the test protocol requirements contained in the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" (NJDEP Filter Protocol) were met with one exception: the sediment test particle size distribution (PSD) was coarser than specified in the NJDEP protocol. Consequently, the verification report does not qualify for NJDEP certification.

Test Sediment Feed -The mean PSD of the test sediment utilized for removal efficiency testing was significantly coarser than the PSD criteria established by the NJDEP Filter protocol (167 μ m vs 75 μ m).

Removal Efficiency Testing – The Bio CleanTM MLS Filter Model 24-24-24 achieved an overall removal efficiency of 86.6% of the test sediment (d_{50} of 167 µm) prior to reaching the sediment mass loading capacity.

Sediment Mass Loading Capacity – The sedimentation mass loading capacity of the Bio Clean[™] MLS Filter Model 24-24-24 was determined to be 199.3 lbs.

All other criteria and requirements of the NJDEP Filter Protocol were met. These include: flow rate measurements COV <0.03; test sediment influent concentration COV <0.10; test sediment influent concentration within 10% of the targeted value of 200 mg/L (or 400 mg/L); influent background concentrations <20 mg/L; and water temperature <80 °F.

Sincerely,

Behand & Magee

Richard S. Magee, Sc.D., P.E., BCEE Executive Director

8. References

- 1. NJDEP 2013. New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device. January 25, 2013.
- 2. GHL Laboratory Notebook: A020, pp. 129-160; A021, pp. 1-36