NJCAT TECHNOLOGY VERIFICATION

AtlanFilter® Stormwater Treatment Device

ATLAN Stormwater Pty Ltd (Trading as ATLAN)

November 2025

Table of Contents

List	of Figur	res	ii
List	of Table	es	iii
1.	Desc	ription of Technology	1
2.	Labo	pratory Testing	2
	2.1	Test Setup	
	2.2	Removal Efficiency and Mass Loading Capacity Testing	7
	2.3	Scour Testing	9
	2.4	Quality Objectives and Criteria	9
	2.5	Laboratory Proficiency	10
3.	Perfo	ormance Claims	10
4.	Supp	orting Documentation	11
	4.1	Test Sediment PSD Analysis	11
	4.2	Sediment Moisture Content Results	13
	4.3	Removal Efficiency and Mass Loading Testing	14
	4.4	Water Surface Level (Hydraulic Grade Line)	22
5.	Desig	gn Limitations	24
6.	Main	ntenance	25
7.	State	ments	25
8.	Refe	rences	31
VER	RIFICAT	TION APPENDIX	32

List of Figures

Figure 1. Typical AtlanFilter Schematic Cross-section (ATLAN Stormwater, 2022)	
Figure 2. Typical AtlanFilter Arrangement (ATLAN Stormwater, 2025)	
Figure 3 Laboratory Test Setup	
Figure 4 Photo of the AtlanFilter FIL-3.0 Model Test Rig	
Figure 5 Photo of the Installed Constant Head Tank	
Figure 6 Starflow QSD Installed at the Invert of the AtlanFilter Test Vault	5
Figure 7 Screw-Auger Dosing	<i>6</i>
Figure 8 Upstream Dosing Location	<i>6</i>
Figure 9 Outlet Sampling Location and 30° V Notch Weir (flow direction shown)	
Figure 10 PSD Curves of 1-1000 Micron Test Sediment	13
Figure 11 Cumulative Removal Efficiency vs Cumulative Sediment Mass Captured	22
Figure 12 Maximum Water Surface Level vs Cumulative Sediment Mass Captured	23

List of Tables

Table 1 Relevant Dimensions of the AtlanFilter FIL-3.0	4
Table 2 Sampling Schedule	9
Table 3 Laboratory Proficiency SSC Results	10
Table 4 NJDEP Test Sediment PSD Requirements	
Table 5 PSD of Test Sediment Samples	12
Table 6 Moisture Content Results	13
Table 7 Summary of Flow Rate and Water Temperature	
Table 8 Feed Rate and Concentration QA/QC Results	
Table 9 Background and Effluent Sediment Concentrations	18
Table 10 Summary of Removal Efficiency Test Results	19
Table 11 Background and Effluent Sediment Concentrations	20
Table 12 Summary of Sediment Mass Loading Test Results	
Table 13 Maximum WSL vs Cumulative Mass Captured	

1. Description of Technology

The AtlanFilter is a new technology incorporating hydrodynamic processes and filtration into a compact HDPE package (Figure 1). AtlanFilter cartridges are enclosed within a rectangular, precast concrete vault designed to be installed in an offline configuration, utilizing an upstream diversion pit and downstream collection pit. AtlanFilters perform water treatment to remove very fine particulates, dissolved nutrients and heavy metals, using a specific proprietary media blend, though this test is for suspended solids only. Hydraulic pressure developed by increasing water level in the vault, forces water upwards through the filter media, is collected by the central tube and discharges through the outlet pipe. Once the water level in the vault reaches the level of the air release valve on the lid, all air is evacuated from the filter, and a siphon commences inside the cartridge. This siphon continues to operate until the water level in the vault drops (under drawdown conditions) below the inlet level of the cartridge (height of the legs), whereby the siphon breaks and a backwash occurs. Upon completion of a storm event, each cartridge backwashes and effectively dislodges particulates from the filtration media. This re-establishes filter porosity and maintains treatment flow rate. The dislodged particles accumulate on the vault floor for easy removal during maintenance.

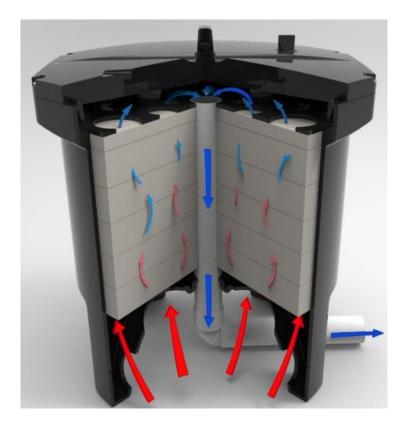


Figure 1 Typical AtlanFilter Schematic Cross-section (ATLAN Stormwater, 2022)

AtlanFilter cartridges are installed inside a vault (typically underground) and require a weir in the vault to form the hydraulic head for the filters to activate a siphon (**Figure 2**). AtlanFilter cartridges are produced in two flowrates (3 L/s and 1.5 L/s) with corresponding treatment flowrates.

*Note – The <u>tested arrangement was at the minimum tank footprint for a single cartridge</u> where the above arrangement indicates potentially a larger filter vault (effective sedimentation treatment area) with multiple filters, that could be expanded to fill the available vault area. The image is indicative only.

Figure 2 Typical Atlan Filter Arrangement (ATLAN Stormwater, 2025)

2. Laboratory Testing

The test program was conducted from September - October 2025 by Waterlabs Australia (WLA) at the company's full-scale hydraulic testing facility in Brisbane, Australia under the direction of Dr Darren Drapper. WLA is an independent, third party hydraulics laboratory that provides testing services to external clients.

The particle size distribution (PSD) was independently verified by ALS Environmental (ALS) to demonstrate that the test sediment meets the specifications as detailed in Section 4 of the NJDEP Filtration Protocol. ALS Environmental is ISO/IEC 17025 (2017) accredited with the National Association of Testing Authorities (NATA) for PSD testing in accordance with Australian Standards AS1289 3.6.1 (sieve) and AS1289 3.6.3 (hydrometer). Water analysis of background and effluent samples was conducted by the Environmental Analysis Laboratory (EAL), Southern Cross University, also a ISO/IEC 17025 (2017) NATA accredited laboratory. EAL is accredited for suspended sediment concentration (SSC) analysis (APHA 2540D).

Laboratory testing was conducted in accordance with the NJDEP "Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" January 14, 2022, updated April 25, 2023 (Filtration Protocol). Prior to starting the performance testing program, a quality assurance project plan (QAPP) was submitted to, and approved by, the New Jersey Corporation for Advanced Technology (NJCAT) as per the NJDEP procedure for obtaining verification of a stormwater MTD from NJCAT (August 4, 2021).

2.1 Test Setup

The laboratory setup is shown schematically in **Figure 3**. Descriptions of the key components are provided in the following text.

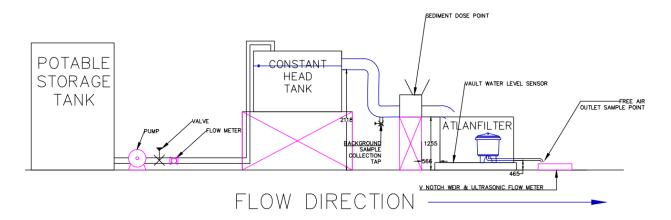


Figure 3 Laboratory Test Setup

Test Unit

A full-scale commercially available AtlanFilter FIL-3.0 model was tested (**Figure 4**). Relevant dimensions of the tested AtlanFilter FIL-3.0 model are provided in **Table 1**.

Figure 4 Photo of the AtlanFilter FIL-3.0 Model Test Rig

Table 1 Relevant Dimensions of the AtlanFilter FIL-3.0

AtlanFilter FIL-3.0	Dimensions (mm)
Inlet pipe diameter (mm)	225
Outlet pipe diameter (mm)	50
Invert Level Inlet (mm)	1200
Invert Level Outlet (mm)	0
Test rig vault internal width (mm)	870
Test rig vault internal length (mm)	1200
Available depth in test rig (mm)	1200
Overall Filter Cartridge Height (mm)	849
Nominal Diameter (mm)	782
Effective Filtration Treatment Area (m ²)	0.419

Flow Measurement

Water was pumped to the constant head tank and flowrate monitored using a DN100 MagFlux 7200 ultrasonic flow meter (Serial no. 7015842, Part no. 887231-016-00).

Figure 5 Photo of the Installed Constant Head Tank

Pumping into a constant head tank allowed the water to naturally overflow from the tank as a free surface flow into a 225mm (8.86 inches) diameter PVC pipe at >1% grade, simulating a stormwater pipe under typical flow conditions. The gradient on the PVC pipe from the header tank (**Figure 5**)

is sufficient to prevent any tailwater conditions causing a head variation in the tank.

Calibration of the MagFlux was performed by the manufacturers in the factory. In-situ calibration is not required by the manufacturer. However, for the purposes of this testing, flow measurements and temperature were also taken from a downstream 30° V notch weir using a Starflow QSD ultrasonic sensor to provide water depth against the calibrated V notch (refer **Figure 3**). This also acts as a second flowrate check against the Magflux influent flow rate measurement.

All flow meter data were recorded by a Campbell Scientific datalogger at a maximum of 10 second intervals, with average flowrate calculated across a 60 second rolling window. The target flowrate was 3 L/s (47.55 gpm) with an acceptable variation of \pm 0.3 L/s (4.76 gpm) (\pm 10%). The concentration coefficient of variance (COV) of the flow data was \pm 0.03.

Head Measurements

An additional Starflow QSD was installed inside the filter vault test rig to record the head level during the test (**Figure 6**).

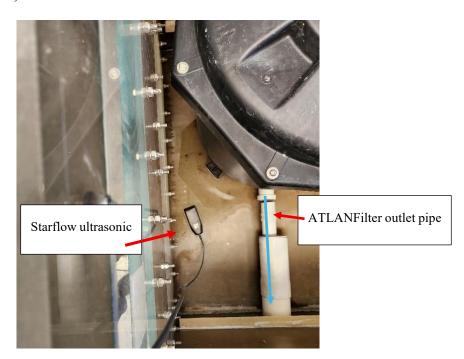
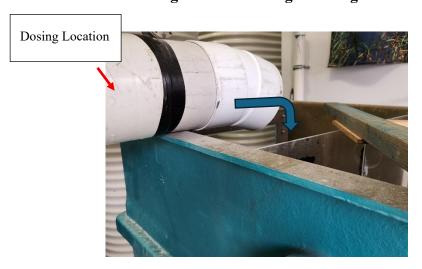


Figure 6 Starflow QSD Installed at the Invert of the AtlanFilter Test Vault


The water level in the vault was recorded every 5 seconds during the test. The minimum tolerance of the Starflow QSD was ± 2.5 mm (0.1 inches). This was used to determine the driving head as the filter occludes.

Test Sediment Dosing

A screw-auger (WAM Micro-batch Feeder, MBF042A) was used to deliver the appropriate target levels of test sediment to the potable water flow, at 566mm (less than the maximum of 1,000mm, <3 feet) upstream of the test device (**Figure 7**). The pipework upstream of the device was configured to provide appropriate turbulence to ensure a fully mixed influent prior to entering the device. The inlet pipe was 225mm (8.86 inches) PVC and had a minimum 1% slope. The filter outlet pipe was 50mm (2 inches) discharging into a 100mm (4 inches) PVC connection through the vault wall. Photos of the dosing location and outlet sampling location can be seen in **Figures 8** and **9**, respectively. Any sediment settled in the inlet pipe was removed, weighed and added to the balance of sediment not dosed to the test unit.

Figure 7 Screw-Auger Dosing

Figure 8 Upstream Dosing Location

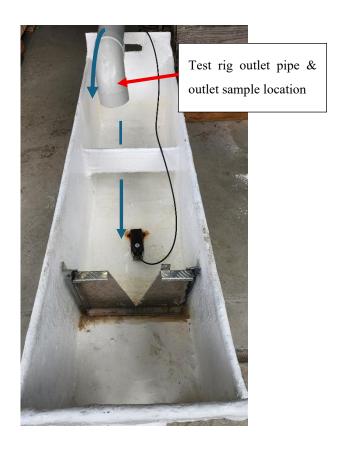


Figure 9 Outlet Sampling Location and 30° V Notch Weir (flow direction shown)

2.2 Removal Efficiency and Mass Loading Capacity Testing

Sediment removal testing was conducted to determine the removal efficiency as well as the sediment mass loading capacity. All test runs were conducted with clean, potable water containing a background suspended sediment concentration (SSC) of <20 mg/L.

The sediment testing was conducted on an initially clean system at the target 100% MTFR of 3 L/s (47.55 gpm) with an influent concentration of 200 mg/L ($\pm 10\%$). A minimum of ten 30-minute test runs were required to be conducted to meet the removal efficiency criterion of a cumulative removal efficiency >80%. The captured sediment was not removed from the system between test runs.

Ten (10) test runs were performed at an influent TSS concentration of 200 mg/L ($\pm 10\%$). For each of these tests, five effluent samples, three background samples, and two drawdown samples were collected. Samples collected at the WLA hydraulics lab were forwarded to the EAL laboratory at Southern Cross University for SSC testing. Water samples were tested using the whole sample with washout, in accordance with ASTM D3977.

Prior to each sediment removal efficiency test, the auger was calibrated to ensure the appropriate

amount of test sediment was injected +/- 10%. The mass of the dose sediment was determined prior to each test with a calibrated Ohaus Scout SPX123 balance to the nearest 0.01kg. This was deposited into the auger. The sediment remaining in the auger was removed at completion of the test and weighed. The total influent mass dosed per test run was determined by correcting for moisture content, sediment retained in the inlet pipe and subtracting the mass collected for the dose rate samples.

The total mass injected into the system was quantified for each run by subtracting the mass remaining in the feeder and corrected for the feed rate calibrations from the recorded starting mass. This value was used in calculating the influent mass/volume concentration.

The Sediment Mass Loading Capacity Testing was a continuation of the TSS Removal Efficiency study. Once 10 compliant test runs were completed, the Mass Loading Capacity testing was performed at a target influent concentration of 200 mg/L ($\pm 10\%$). In accordance with the NJDEP Protocol, testing continued until the cumulative TSS removal efficiency dropped below 80%, and/or the driving head exceeded the maximum driving head. The driving head was not observed to exceed the maximum level in the vault (1000mm) during the testing. Once the cumulative TSS removal efficiency dropped below 80%, however, further testing ceased. Due to the delay in receiving the SSC results from the laboratory, a total of 22 tests were completed before it was identified that the cumulative RE no longer achieved 80%. These latter results are included in the report for completeness but not used for performance evaluation.

From the data collected, the following graphs are produced to show the life cycle performance of the AtlanFilter FIL-3.0 stormwater treatment device:

- Driving Head vs. Sediment Mass Loading
- Removal Efficiency vs. Sediment Mass Loading

The total mass captured in the system was quantified at the conclusion of the testing. This data is used for determination of the maximum inflow drainage area (acres) per the NJDEP protocol.

Sediment Sampling

During the test, sediment feed samples were collected at the injection point before, in the middle and just prior to the conclusion of each test run, into a clean 500mL plastic jar. A minimum volume of 0.1 liter was collected or a collection interval that did not exceed 1 minute, timed to the nearest second (whichever comes first). Samples were weighed to the nearest 0.01g with analysis revealing that the COV did not exceed 0.10. When sampling was interrupted to collect the sediment sample, three MTD detention times were waited before outlet sampling recommences.

Background, Effluent and Drawdown Sampling

The background and effluent samples were collected according to a predetermined schedule. The effluent grab samples were collected in clean plastic 1-L containers in a single sweeping motion across the full effluent flow profile.

Background grab samples were collected in clean plastic 2-L containers, taken from the inlet pipe, via a tap in the invert of the pipe, in correspondence with each odd-numbered effluent sample. The first effluent grab sample was collected following a minimum of three MTD detention times after flow rate was established and the first sediment sample was collected. The detention time was calculated to be 5min:00sec. Therefore, the first effluent sample was collected at 20min:00sec from the commencement of the test to account for the vault to fill, flow through the AtlanFilter to commence, 1-minute sediment dose collection + 15min:00 sec for the three detention times.

Each subsequent sample was taken 2 minutes thereafter, until Sample 3, when the sediment feed sample 2 was taken. Then the next effluent sample was delayed by 16min:00sec (3 detention times + 1 minute sediment collection) to avoid being influenced by the interruption of the sediment dosing. Sample volumes were a minimum of 500 ml per the NJDEP Protocol requirements. Since the AtlanFilter incorporates an internal backwash and post-operation drawdown flow, flow measurement and samples of this function were captured according to the observed volume (measured by HGL level) as drawdown occurred. The sampling schedule used is shown in **Table 2**.

Elapsed Time Sediment Feed Background Drawdown **Effluent Sample** (hh:mm:ss) Sample TSS Sample Sample 0:00:00 1 1 0:20:00 1 2 0:22:00 3 2 2 0:24:00 4 0:40:00 5 3 3 0:42:00 $0:44:30^{1}$ 1

Table 2 Sampling Schedule

2.3 Scour Testing

 $0:46:00^{1}$

No scour testing was conducted since the AtlanFilter is designed for offline installation.

2.4 Quality Objectives and Criteria

Samples were collected in-house by WLA personnel. All collection bottles were labelled and organized prior to testing. Samples were sent to EAL as soon as possible after testing. A Chain of Custody (COC) form was used for each set of samples.

Sediment was stored in sealed crates, with desiccant parcels to minimize moisture content, and accessed immediately prior to the test to weigh the dose amount required for the test.

¹Exact time was determined by the flowrate out and volume passed to ensure even volume-spaced samples.

Other quality control measures that were performed during the tests were:

- Monitoring water temperature to ensure temperature did not exceed 80 degrees Fahrenheit (26.7°C).
- Monitoring background water concentrations to ensure background TSS levels did not exceed 20 mg/L.
- Monitoring flowrate at the inlet and the outlet.

2.5 Laboratory Proficiency

To demonstrate laboratory proficiency in accordance with Section 3B of the Protocol, eight water samples were spiked with known concentrations [4 @ 20 (\pm 5) mg/L, 4 @ 50 (\pm 5) mg/L] by WLA using the same sediment as that used for the performance testing. This exceeds the minimum Protocol requirement of 3 each. These samples were sent to EAL, the independent third party laboratory, for analysis against the APHA 2540D standard, adapted to apply the same requirements of ASTM D3977-97 including using the full 500mL sample volume, and rinsing the sample container. When considered as an average of all results (n = 4 each), the SSC recovery is within the 85%-115% range specified by the Protocol. Results are shown in **Table 3**.

Table 3 Laboratory Proficiency SSC Results

Sample ID	Measured Con- centration (mg/L)	Reported Concentration (mg/L)	% recovery
8326-0018	24.5	28	114%
8326-0017	18.5	17	92%
8326-0016	24.5	27	110%
8326-0015	21.5	23	107%
Average			106%
SD			8%
CI			8%
8326-0006	50.5	46	91%
8326-0005	45.5	39	86%
8326-0004	50.5	54	107%
8326-0003	54.5	65	119%
Average			101%
SD			13%
CI			13%

3. Performance Claims

Per the NJDEP verification procedure and based on the laboratory testing conducted on the Atlan-Filter FIL-3.0, the following are the performance claims made by ATLAN.

Total Suspended Solids (TSS) Removal Efficiency

Based on the laboratory testing conducted, the tested AtlanFilter FIL-3.0 achieved a 82.9% cumulative TSS removal efficiency rounded down to 80% per the NJDEP protocol.

Effective Filtration Treatment Area (EFTA)

The AtlanFilter FIL-3.0 tested has an EFTA of 0.419 m^2 - (4.51 ft^2) .

Effective Sedimentation Treatment Area (ESTA)

The AtlanFilter FIL-3.0 test rig has an ESTA of 1.08 m² - (11.63 ft²).

Wet Volume (WV)

The AtlanFilter FIL-3.0 test rig has a Wet Volume of 1.08 m³ - (38.14 gal).

Maximum Treatment Flow Rate (MTFR)

The AtlanFilter FIL-3.0 tested has an MTFR of $47.55 \text{ gpm} (3 \text{ L/s}) - (47.55/4.51 = 10.54 \text{ gpm/ft}^2)$

Sediment Load Capacity/Mass Load Capture Capacity

Based on laboratory testing results, the AtlanFilter FIL-3.0 has a mass loading capacity of 51.59 lbs (23.407 kg) and a mass loading capture capacity of 41.29 lbs (18.727 kg).

Maximum Allowable Inflow Drainage Area

Per the NJDEP filter protocol, to calculate the maximum inflow drainage area, the total sediment load captured mass observed during the test (41.29 lbs) is divided by 600 lbs/acre. Thus, the maximum inflow drainage area for the AtlanFilter FIL-3.0 is 0.069 acres (per cartridge).

4. Supporting Documentation

The NJDEP procedure (NJDEP, 2021) for obtaining verification of a stormwater manufactured treatment device (MTD) from the New Jersey Corporation for Advanced Technology (NJCAT) requires that "copies of the laboratory test reports, including all collected and measured data; all data from performance evaluation test runs; spreadsheets containing original data from all performance test runs; all pertinent calculations; etc." be included in this section. This was discussed with NJDEP, and it was agreed that as long as such documentation could be made available by NJCAT upon request it would not be prudent or necessary to include all this information in this verification report. This information was provided to NJCAT and is available upon request.

4.1 Test Sediment PSD Analysis

The test sediment is a commercial brand of ground silica known as Sil-Co-Sil 106, blended with a sieved silica sand to simulate the NJDEP required particle size distribution. This material has a

specific gravity of 2.65. The particle size distribution (PSD) was independently verified by ALS Environmental (ALS) to demonstrate that the test sediment meets the specifications as detailed in Section 4 of the NJDEP Protocol (**Table 4**). ALS Environmental is accredited with the National Association of Testing Authorities (NATA) for PSD testing in accordance with AS1289 3.6.1 (sieve) and AS1289 3.6.3 (hydrometer) analysis. Three (3) samples were tested using the above methods. Results of the particle size gradation testing are shown in **Table 5**. These results are graphed against the NJDEP required PSD in **Figure 10**.

Table 4 NJDEP Test Sediment PSD Requirements

Particle size (microns)	NJDEP Specification (% passing)
1000	100
500	95
250	90
150	75
100	60
75	50
50	45
20	35
8	20
5	10
2	5

Table 5 PSD of Test Sediment Samples

Particle diameter	Test s	NJDEP (-2%)			
(microns)	Sediment 1	Sediment 2	Sediment 3	Test Sedi- ment Aver- age	PASS/FAIL
1000	100	100	100	100	PASS
500	98	98	98	98	PASS
250	87	87	90	88	PASS
150	77	77	82	79	PASS
100	61	63	68	64	PASS
75	53	56	61	57	PASS
50	49	51	55	52	PASS
20	32	32	34	33	PASS

8	19	18	20	19	PASS
5	14	14	15	14	PASS
2	9	11	11	10	PASS
d50(μm)	59	50	42	50	PASS

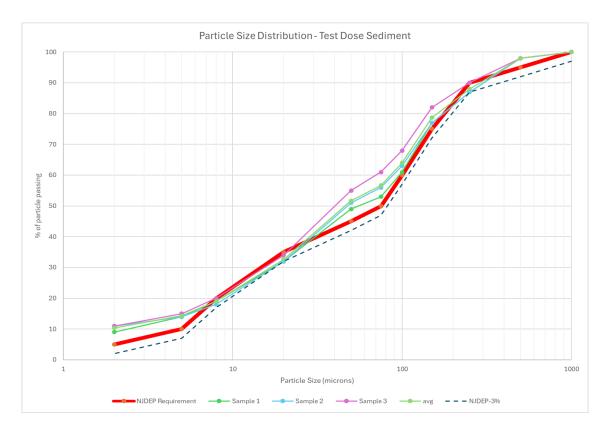


Figure 10 PSD Curves of 1-1000 Micron Test Sediment

4.2 Sediment Moisture Content Results

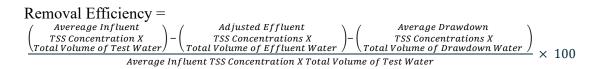
The moisture content of the feed sediment was tested for each feed sample in accordance with NEPM Schedule B(3). The results are averaged and presented in **Table 6**.

Table 6 Moisture Content Results

	Moisture content						
Test	Feed 1	Feed 2	Feed 3	Average			
1	< 0.1	< 0.1	< 0.1	0.05			
2	< 0.1	< 0.1	< 0.1	0.05			
3	0.6	0.3	0.2	0.37			
4	0.3	0.3	0.6	0.40			
5	0.3	< 0.1	< 0.1	0.13			

6	0.2	0.1	<0.1	0.12
7	< 0.1	<0.1	< 0.1	0.05
8	< 0.1	<0.1	< 0.1	0.05
9	< 0.1	< 0.1	0.1	0.07
10	< 0.1	<0.1	< 0.1	0.05
11	< 0.1	<0.1	< 0.1	0.05
12	< 0.1	<0.1	0.3	0.13
13	0.2	0.1	< 0.1	0.12
14	< 0.1	< 0.1	< 0.1	0.05
15	< 0.1	<0.1	<0.1	0.05
16	0.2	0.4	0.3	0.30
17	0.2	< 0.1	< 0.1	0.10
18	0.1	0.2	<0.1	0.12
19	< 0.1	0.2	0.2	0.15
20	0.2	0.2	0.2	0.20
21	< 0.1	< 0.1	<0.1	0.05
22	< 0.1	< 0.1	< 0.1	0.05
Average				0.12

4.2 Removal Efficiency and Mass Loading Testing


The influent mass was calculated from Eqn. 1:

Influent Mass $(mg) = (1-Sediment\ Moisture\ Content)\ x\ [Mass_{pre-test\ (kg)} - Mass_{post-test\ (kg)} - Mass_{inlet}\ pipe\ (kg)]\ -\sum Mass_{dose\ samples}\ x\ (1x10^6)$

The average influent SSC was then calculated from Eqn. 2:

$$Average\ Influent\ SSC\ \left(\frac{mg}{L}\right) = \frac{Eqn\ 1.\ Influent\ Mass\ (mg)}{Average\ Flowrate\ \left(\frac{L}{min}\right)*\ Time_{dose\ injection}\ (min)}$$

The individual run efficiency was calculated from **Eqn. 3**:

Testing Summary

A total of 10 removal efficiency test runs, and 12 additional sediment mass loading capacity test runs were performed in accordance with the NJDEP Protocol. The target influent concentration was maintained at 200 mg/L for the 12 sediment mass loading capacity test runs. The target removal efficiency tests were conducted at 3 L/s (47.55 gpm) as were all of the sediment mass loading capacity tests. The driving head was not exceeded during the SML testing; however, SSC results were observed below the cumulative 80% Removal Efficiency requirement at Run 17. All tests met the requirements of the NJDEP protocol and the QA/QC parameters. **Table 7** (Flow Rate and Water Temperature) and **Table 8** (Feed Rate and Water Temperature) summarize the various QA/QC parameters recorded during the test runs.

Table 7 Summary of Flow Rate and Water Temperature

Test ID	QA/QC Pass/Fail	Target Inflow Rate (L/s)	Target Inflow Rate (gpm)	Average Inflow Rate (L/s)	Average Inflow Rate (gpm)	Inflow Rate COV (≤0.03)	Maximum Water Tem- perature (≤ 26.3 °C)	Maximum Water Tem- perature (≤ 80 °F)
1	PASS	3.0	47.55	2.992	47.430	0.0018	21.1	70.0
2	PASS	3.0	47.55	3.034	48.092	0.0080	21.3	70.3
3	PASS	3.0	47.55	3.005	47.625	0.0011	22.3	72.1
4	PASS	3.0	47.55	2.964	46.979	0.0086	22.3	72.1
5	PASS	3.0	47.55	3.014	47.779	0.0034	22.0	71.6
6	PASS	3.0	47.55	2.984	47.299	0.0038	22.3	72.1
7	PASS	3.0	47.55	2.996	47.483	0.0010	22.3	72.1
8	PASS	3.0	47.55	2.965	47.002	0.0082	22.5	72.5
9	PASS	3.0	47.55	3.006	47.643	0.0014	23.0	73.4
10	PASS	3.0	47.55	2.953	46.808	0.0111	23.0	73.4
SML-1	PASS	3.0	47.55	2.983	47.280	0.0040	23.3	73.9
SML-2	PASS	3.0	47.55	2.991	47.410	0.0021	23.7	74.7
SML-3	PASS	3.0	47.55	2.990	47.385	0.0025	23.7	74.7
SML-4	PASS	3.0	47.55	2.967	47.035	0.0077	24.0	75.2
SML-5	PASS	3.0	47.55	2.959	46.906	0.0097	24.0	75.2
SML-6	PASS	3.0	47.55	2.966	47.005	0.0082	23.7	74.7
SML-7	PASS	3.0	47.55	2.969	47.066	0.0073	24.2	75.6

SML-8	PASS	3.0	47.55	3.008	47.680	0.0019	24.2	75.6
SML-9	PASS	3.0	47.55	3.087	48.930	0.0202	24.2	75.6
SML-10	PASS	3.0	47.55	3.033	48.068	0.0076	24.5	76.1
SML-11	PASS	3.0	47.55	3.013	47.754	0.0030	25.2	77.4
SML-12	PASS	3.0	47.55	3.009	47.692	0.0021	25.5	77.9

Table 8 Feed Rate and Concentration QA/QC Results

Test ID	QA/QC Pass/Fail	Target Inflow SSC (mg/L)	Average Influent SSC (mg/L) (±10%)	Dose Mass in Pipe & Auger (g)	Moisture (Corrected I (g/min)	Feed Rate	Feed Rate COV (≤ 0.10)	Average Background SSC (mg/L)	Minimum SSC Sam- ple Vol- ume (mL) (>500 mL)
1	PASS	200	196.00	3	36.28	34.88	32.96	0.0480	0.5	512
2	PASS	200	189.92	3	35.00	34.10	33.54	0.0215	0.5	519
3	PASS	200	199.29	2	36.51	37.25	37.32	0.0121	0.5	512
4	PASS	200	209.27	3	36.38	37.60	35.54	0.0284	0.5	515
5	PASS	200	212.40	4	38.00	38.77	39.05	0.0141	0.5	556
6	PASS	200	204.92	3	37.43	34.76	35.02	0.0412	0.5	524
7	PASS	200	195.16	2	38.01	37.41	35.09	0.0418	0.5	527
8	PASS	200	203.83	3	37.53	36.89	35.49	0.0285	0.7	526
9	PASS	200	194.32	2	37.12	35.50	34.88	0.0323	0.5	526
10	PASS	200	198.17	2	35.63	36.34	35.22	0.0159	0.5	527
SML-1	PASS	200	216.28	3	35.08	38.48	37.18	0.0465	0.5	504
SML-2	PASS	200	206.00	5	38.10	35.58	35.78	0.0383	0.5	502
SML-3	PASS	200	211.75	3	37.16	36.07	37.21	0.0175	1.2	533
SML-4	PASS	200	202.85	5	33.87	37.59	35.54	0.0522	0.5	541
SML-5	PASS	200	207.41	4	35.55	38.13	35.86	0.0386	0.5	537
SML-6	PASS	200	212.76	4	38.10	38.87	36.10	0.0379	0.5	552
SML-7	PASS	200	216.15	5	39.03	35.76	34.57	0.0634	0.5	550
SML-8	PASS	200	200.92	4	37.97	38.46	34.56	0.0574	0.5	546
SML-9	PASS	200	213.04	3	35.35	39.03	40.33	0.0676	0.5	542
SML-10	PASS	200	213.70	4	38.26	40.38	39.22	0.0270	0.5	538
SML-11	PASS	200	213.36	4	35.54	34.52	37.54	0.0429	1.0	531
SML-12	PASS	200	201.63	5	36.93	37.07	33.80	0.0516	0.5	518

Removal Efficiency Results

Results from the 10 removal efficiency tests are shown in **Table 9** (Background and Effluent Sediment Concentrations) and **Table 10** (Summary of Removal Efficiency Test Results). The cumulative sediment removal efficiency at Run 10 of 82.9% exceeds the NJDEP protocol requirement of $\geq 80\%$.

Table 9 Background and Effluent Sediment Concentrations

T ID.		I	ndivi	dual S	Sampl	le	
Test ID		1	2	3	4	5	Average
1	Background	0.5		0.5		0.5	0.5
1	Effluent	30	30	34	32	31	31.4
	Drawdown	21	16				18.5
2	Background	0.5		0.5		0.5	0.5
2	Effluent	35	36	37	35	34	35.4
	Drawdown	23	16				19.5
2	Background	0.5		0.5		0.5	0.5
3	Effluent	35	35	30	36	38	34.8
	Drawdown	26	18			Average 4 5 0.5 0.5 32 31 18.5 0.5 0.5 35 34 19.5 0.5 0.5 38 34.8 22.0 0.5 0.5 38 39 19.0 0.5 0.5 43 43 23.5 0.5 0.5 36 36 36 36.8 22.5 0.5 0.5 7 8 7.6 5.0 0.5 0.67 12 12 18.8 6.0 0.5 0.5	
4	Background	0.5		0.5		0.5	0.5
4	Effluent	38	43	38	38	38	39
	Drawdown	22	16				19.0
	Background	0.5		0.5		0.5	0.5
5	Effluent	43	43	44	43	43	43.2
	Drawdown	28	19				23.5
	Background	0.5		0.5		0.5	0.5
6	Effluent	38	37	37	36	36	36.8
	Drawdown	28	17				22.5
7	Background	0.5		0.5		0.5	0.5
7	Effluent	7	7	9	7	8	7.6
	Drawdown	7	3				5.0
0	Background	1		0.5		0.5	0.67
8	Effluent	34	19	17	12	12	18.8
	Drawdown	9	3				6.0
0	Background	0.5		0.5		0.5	0.5
9	Effluent	47	48	45	44	44	45.6
	Drawdown	28	18				23.0

1.0	Background	0.5		0.5		0.5	0.5
10	Effluent	41	39	43	41	40	40.8
	Drawdown	27	22				24.5

Table 10 Summary of Removal Efficiency Test Results

Test ID	Dosing Water Volume (L)	Net Sed- iment Mass In- jected (g)	Average Adjusted Effluent SSC (mg/L)	Average Drawdown Mass (g)	Efflu- ent Mass (g)	Mass Cap- tured (g)	Cumulative Mass Captured (kg)	Cumulative Mass Injected (kg)	Cumulative Removal Efficiency (%)
1	7212	1417	30.90	9	223	1185	1.185	1.417	83.6
2	7282	1387	34.90	14	254	1118	2.303	2.804	82.1
3	7196	1438	34.30	12	247	1179	3.482	4.241	82.1
4	7099	1489	38.50	14	273	1202	4.684	5.730	81.7
5	7219	1537	42.70	17	308	1212	5.896	7.268	81.1
6	7162	1471	36.30	11	260	1200	7.096	8.739	81.2
7	7190	1407	7.10	2	51	1353	8.449	10.145	83.3
8	7087	1449	18.13	3	129	1318	9.767	11.595	84.2
9	7199	1403	45.10	17	325	1061	10.828	12.997	83.3
10	7087	1408	40.30	12	286	1110	11.938	14.405	82.9

Sediment Mass Load Capacity Testing

After completion of the required 10 removal efficiency test runs, sediment feed rate, background, outlet and drawdown samples were collected via grab sampling for a further 12 sediment mass loading (SML) capacity test runs. The target influent concentration for the sediment mass load capacity testing was maintained at 200 mg/L. The maximum permitted HGL (1000 mm), was not reached during this testing. However, cumulative removal efficiency dropped below 80% on Test 17. Due to the delay in receiving results from EAL, a further 5 test runs had already been completed and submitted for testing. Testing was suspended after 22 test runs. Only the results from tests 1-16 are reported for performance claims. These results are shown in **Table 11** (Background and Effluent Sediment Concentrations) and **Table 12** (Summary of Sediment Mass Loading Test Results). **Figure 11** plots cumulative removal efficiency vs sediment mass load captured.

Table 11 Background and Effluent Sediment Concentrations

		I	ndivi	dual S			
Test ID		1	2	3	Avera 4 5		Average
SML-1	Background	0.5		0.5		0.5	0.5
	Effluent	52	53	52	46	43	49.2
	Drawdown	33	24				28.5
SML-2	Background	0.5		0.5		0.5	0.5
	Effluent	44	36	33	39	42	38.8
	Drawdown	27	21				24.0
SML-3	Background	0.5		0.5		0.5	0.5
	Effluent	33	28	39	34	41	35
	Drawdown	31	25				28.0
SML-4	Background	0.5		0.5		0.5	0.5
	Effluent	63	62	68	54	43	58
	Drawdown	35	26				30.5
SML-5	Background	0.5		0.5		0.5	0.5
	Effluent	62	64	63	52	48	57.8
	Drawdown	35	25				30.0
SML-6	Background	0.5		0.5		0.5	0.5
	Effluent	51	61	63	58	57	58
	Drawdown	42	29				35.5
SML-7	Background	0.5		0.5		0.5	0.5
	Effluent	53	51	58	48	57	53.4
	Drawdown	33	31				32.0
SML-8	Background	0.5		0.5		0.5	0.5
	Effluent	56	62	58	54	57	57.4
	Drawdown	36	28				32.0
SML-9	Background	0.5		0.5		0.5	0.5
	Effluent	42	53	51	53	55	50.8
	Drawdown	40	27				33.5
SML-10	Background	0.5		0.5		0.5	0.5
	Effluent	33	36	34	57	59	43.8
	Drawdown	35	25				30.0

ID		I	ndivi	dual S			
Test ID		1	2	3	4	5	Average
SML-11	Background	2.0		0.5		0.5	1.0
	Effluent	9	5	12	5	6	7.4
	Drawdown	5	4				4.5
SML-12	Background	0.5		0.5		0.5	0.5
	Effluent	5	7	5	5	7	5.8
	Drawdown	4	4				4.0

Table 12 Summary of Sediment Mass Loading Test Results

Test ID	Dosing Water Volume (L)	Net Sed- iment Mass In- jected (g)	Average Adjusted Effluent SSC (mg/L)	Efflu- ent Mass (g)	Draw- down mass (g)	Mass Cap- tured (g)	Cumulative Mass Captured (kg)	Cumula- tive Mass Injected (kg)	Cumulative Removal Efficiency (%)
SML-1	7129	1545	48.7	347	22	1176	13.114	15.950	82.2
SML-2	7179	1482	38.3	275	18	1189	14.303	17.432	82.1
SML-3	7175	1528	33.8	243	20	1265	15.568	18.966	82.1
SML-4	7122	1448	57.5	410	23	1016	16.584	20.408	81.3
SML-5	7102	1477	57.3	407	22	1048	17.632	21.885	80.6
SML-6	7132	1521	57.5	410	18	1093	18.725	23.406	80.0
SML-7	7127	1544	52.9	377	15	1152	19.877	24.950	79.7
SML-8	7220	1454	56.9	411	16	1027	20.904	26.404	79.2
SML-9	7393	1579	50.3	372	17	1190	22.094	27.983	79.0
SML-10	7263	1556	43.3	314	22	1220	23.314	29.539	78.9
SML-11	7216	1547	6.4	46	3	1498	24.812	31.086	79.8
SML-12	7221	1460	5.3	38	3	1419	26.231	32.546	80.6

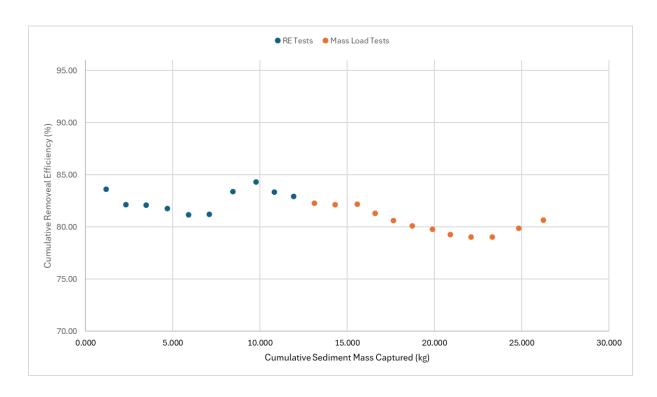


Figure 11 Cumulative Removal Efficiency vs Cumulative Sediment Mass Captured

4.3 Water Surface Level (Hydraulic Grade Line)

Hydraulic grade was monitored for every test. The maximum level permitted before the internal bypass occurs is 1000 mm (39.37 inches). This level was not reached at all in the 22 tests. The maximum water surface level (WSL) during each run along with the cumulative mass captured is shown in **Table 13** and plotted in **Figure 12**.

Table 13 Maximum WSL vs Cumulative Mass Captured

Test ID	Upstream Maximum WSL (mm)	Cumulative Mass Captured (kg)
1	822	1.185
2	982	2.303
3	819	3.482
4	961	4.684
5	981	5.896
6	826	7.096
7	821	8.449
8	819	9.767

Test ID	Upstream Maximum	Cumulative Mass
	WSL (mm)	Captured (kg)
9	968	10.828
10	817	11.938
SML-1	968	13.115
SML-2	967	14.304
SML-3	951	15.569
SML-4	953	16.585
SML-5	934	17.633
SML-6	817	18.727
SML-7	814	19.878
SML-8	815	20.906
SML-9	814	22.096
SML-10	951	23.315
SML-11	970	24.813
SML-12	988	26.232

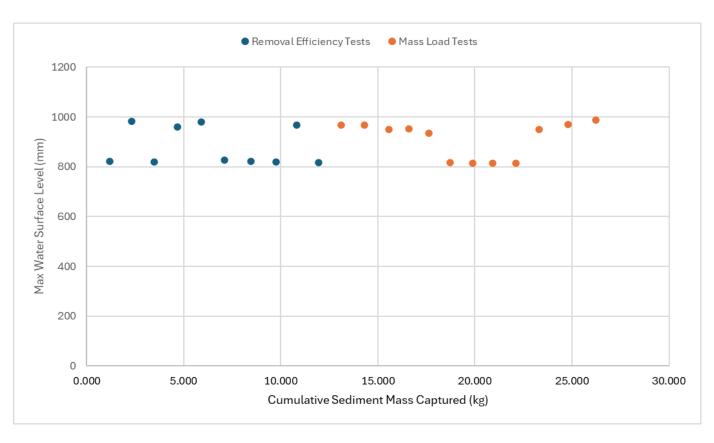


Figure 12 Maximum Water Surface Level vs Cumulative Sediment Mass Captured

5. Design Limitations

Required Soil Characteristics

The soil should be verified for its bearing capacity to ensure it is adequate for the required load prior to installation. The site shall be stabilized to achieve a non-erodible soil surface. Any topsoil removed during the excavation stage should be stockpiled and kept separate from subsoil or other materials. The AtlanFilter should not be installed on frozen ground.

Slope

The floor of the manhole should have a maximum slope of 6 mm (0.24 inches) across its width and a downstream slope of 25 mm (0.98 inches) per 3.7 m (12.14 ft) of length. Here, "length" refers to a line from the outlet invert through the center of the manhole, while "width" is perpendicular to this length.

Maximum Flow Rate

The maximum treatment flow rate of the AtlanFilter is dependent upon model size and performance specifications. The model tested is the FIL-3.0 model, which has a treatable flow rate of 3 L/s (47.55 gpm).

Driving Head

The maximum available driving head for a given AtlanFilter FIL-3.0 model is 1000 mm (39.37 inches).

Installation Limitations

The AtlanFilter is supplied to the site in separate, easily identifiable components. An installation guide is also provided. The device can be installed by a civil or plumbing contractor, with an ATLAN representative present if necessary. Component maximum weights and required lifting clutches information will be shared to the contractor prior to installation.

Configurations

The AtlanFilter is designed solely for offline installations to minimize maintenance requirements and for optimal performance.

Structural Load Limitations

The AtlanFilter is assembled within a fully trafficable (HS-20), precast concrete chamber for underground installations on constrained sites, optimizing above land-use.

Pre-treatment Requirements

Pre-treatment is recommended, but not required, to keep gross pollutants from this device.

Depth to Seasonal High-Water Table

During installation, excavated areas with a high-water table should be continuously dewatered to ensure the site is stable and free of water.

6. Maintenance

The AtlanFilter unit must be maintained in accordance with all relevant health and safety requirements including the use of personal protective equipment (PPE) and fall protection where required. It is generally recommended that inspection of the unit be undertaken every four months for the first year of operation. The schedule may then be relaxed after a year, when confidence is gained regarding the actual pollutant load and run-off generated by the upstream catchment.

Maintenance

Yearly maintenance involves removing the contents of the sump with a vacuum truck. A filter exchange requirement will be triggered if the water level in the filter vault rises to the level of the overflow weir and remains more than 72 hours after rainfall. If this requirement is not triggered, the filters may remain until the following inspection period.

Every 6-8 years, maintenance includes the above procedures as well as additional maintenance practices. This includes removing and replacing the spent AtlanFilter cartridges. The inside of the concrete chamber should be thoroughly rinsed, and the residual material and water vacuumed out. The filters should be replaced with new items, and the old filters taken to the manufacturer for cleaning and replenishment.

Solids Disposal

Solids vacuumed from the device during maintenance including sediment, floatables, and gross pollutant debris can generally be disposed of at a local landfill in accordance with local regulations. The potential toxicity of the residues generated will vary based on the activities within the drainage area. If there is a possibility that the residues are hazardous, testing may be necessary. It is important to consult local regulatory authorities regarding proper disposal procedures in all instances.

Inspection / Maintenance

A detailed inspection procedure, operation and maintenance overview for the AtlanFilter can be found at: Atlan-Filter-Operation-Maintenance-Manual

7. Statements

The following signed statements from the manufacturer (ATLAN), independent testing laboratory (Waterlabs Australia), and NJCAT are required to complete the NJCAT verification process.

Your Ref:

Dr Richard Magee
Executive Director
New Jersey Corporation for Advanced Technology
c/o Center for Environmental Systems
Stevens Institute of Technology
One Castle Point on Hudson
Hoboken, NJ 07030

Verification of the ATLANFilter Independent Test Facility Statement

Dear Dr Richard Magee,

This correspondence is being sent in accordance with the *Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advanced Technology; for use in accordance with the Stormwater Management Rules,* N.J.A.C. 7:8, August 4, 2021.

Compliance

As an Independent Third Party conducting the laboratory testing on behalf of ATLAN Stormwater Pty Ltd (trading as ATLAN), we can advise that all of the procedures and requirements identified in the aforementioned process document, and the *New Jersey Department of Environmental Protection Laboratory Protocol to Assess Tota Suspended Solids Removal by a Filtration Manufactured Treatment Device*, April 25, 2023, and the approved Quality Assurance Project Plan (v1, dated 27th August 2025) have been met or exceeded. The testing executed in the Waterlabs Australia laboratory in Crestmead, QLD, Australia from September to October of 2025, was conducted in full compliance with all applicable protocol and process criteria. We confirm that all the required documentation from the testing, and performance calculations have been provided with the supporting information.

ALTAN representatives were not present during testing.

All samples were tested by independent, external laboratories accredited under the National Association of Testing Authorities (NATA) scheme.

Conflicts of Interest

This letter also discloses that we, and our staff, have no conflicts of interest in performing the above testing. We have a consulting agreement with ATLAN for the ATLANFilter laboratory testing, and have historically provided field testing for ATLAN on the ATLANFilter for the Stormwater Australia, Stormwater Quality Improvement Device Evaluation Protocol (SQIDEP) process. We have no

Waterlabs Australia ABN 91 664 813 361

ownership stake, do not receive sales commissions, do not have licensing agreements and do not receive funds or grants beyond those associated with the testing program.

Waterlabs Australia has provided professional services to other manufacturers of stormwater products with no history of conflicts of interest, or ethical disputes. Our work with each client is protected through non-disclosure agreements and is independent of the work for ATLAN.

Should you have any further queries or concerns, please don't hesitate to contact me on 0431 299 875.

Kind Regards,

Dr Darren Drapper,

B.Eng(Env) Hons, PhD(EnvErg), MBA, Cert IV (WH5), MIEAust, CPEng, RPEQ.

Principal Engineer Waterlabs Australia

Waterlabs Australia ABN 91 664 813 361

Dr Richard Magee

Executive Director
New Jersey Corporation for Advanced Technology
c/o Center for Environmental Systems
Stevens Institute of Technology
One Castle Point on Hudson
Hoboken, NJ 07030

November 04, 2025

Re: Verification of the ATLANFilter 850 model

Dear Dr. Richard Magee,

This correspondence is provided in accordance with the *Procedure for Obtaining Verification* of a Stormwater Manufactured Treatment Device from the New Jersey Corporation for Advanced Technology, for use under the Stormwater Management Rules, N.J.A.C. 7:8 (August 4, 2021; updated April 25, 2023).

As required by the process document, manufacturers must submit a signed statement confirming that all procedures and requirements outlined therein—and in the New Jersey Department of Environmental Protection (NJDEP) Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (August 4, 2021; updated April 25, 2023)—have been met.

We confirm that testing conducted at Waterlabs Australia in Brisbane, QLD, on the ATLANFilter 850 model during September and October 2025, under the direct supervision of Dr. Darren Drapper, Principal Engineer at Waterlabs Australia, was performed in full compliance with all applicable protocol and process criteria. Furthermore, we confirm that all required documentation of the testing procedures and performance calculations is included in the accompanying submittal.

Please do not hesitate to contact me should you have any questions or require additional information.

Yours sincerely,

Mr Andy Hornbuckle Chief Executive Officer ATLAN Stormwater

andy Hornbuckle

Center for Environmental System Stevens Institute of Technology One Castle Point Hoboken, NJ 07030-0000

November 10, 2025

Gabriel Mahon, Chief NJDEP Bureau of Non-Point Pollution Control Division of Water Quality 401 E. State Street Mail Code 401-02B, PO Box 420 Trenton, NJ 08625-0420

Dear Mr. Mahon,

My review, evaluation and assessment covered the performance testing conducted on a commercially available AtlanFilter FIL-3.0 cartridge by Waterlabs Australia (WLA) at the company's full-scale hydraulic testing facility in Brisbane, Australia under the direction of Dr Darren Drapper. WLA is an independent, third party hydraulics laboratory that provides testing services to external clients. The laboratory testing was conducted in accordance with the protocol requirements contained in the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" (NJDEP Filtration Protocol, January 14, 2022, updated April 25, 2023). The protocol requirements were met or exceeded.

Specifically:

Test Sediment Feed

The test sediment is a commercial brand of ground silica known as Sil-Co-Sil 106, blended with a sieved silica sand to simulate the NJDEP required particle size distribution. This material has a specific gravity of 2.65. The particle size distribution (PSD) was independently verified by ALS Environmental (ALS) to demonstrate that the test sediment meets the specifications as detailed in Section 4 of the NJDEP Protocol (**Table 4**). ALS Environmental is accredited with the National Association of Testing Authorities (NATA) for PSD testing in accordance with AS1289 3.6.1 (sieve) and AS1289 3.6.3 (hydrometer) analysis. Three (3) samples were tested using the above methods. With a d_{50} of 50 μ m, the test sediment was significantly finer than the sediment required by the NJDEP test protocol (75 μ m).

Removal Efficiency (RE) Testing

Ten (10) removal efficiency test runs were completed in accordance with the NJDEP test protocol. The target flow rate and influent sediment concentration were 3 L/s (47.55) gpm and 200 mg/L for the removal efficiency testing. The AtlanFilter FIL-3.0 cartridge achieved a cumulative removal efficiency of 82.9% for the 10 required sediment removal runs. The temperature for all test runs did not exceed 80 degrees Fahrenheit.

Sediment Mass Loading Capacity

Mass loading capacity testing was conducted as a continuation of removal efficiency testing for an additional 12 runs. Mass loading test runs were conducted using identical testing procedures and flow rate target as those used in the removal efficiency runs. The maximum permitted HGL (1000 mm), was not reached during this testing. However, cumulative removal efficiency dropped below 80% on Test 17. Due to the delay in receiving results from EAL, an additional 5 test runs had already been completed and submitted for SSC testing. Testing was suspended after 22 test runs. Only the results from tests 1-16 are reported for performance claims. The temperature for all test runs did not exceed 80 degrees Fahrenheit. Based on laboratory testing results, the AtlanFilter FIL-3.0 has a mass loading capacity of 51.59 lbs (23.407 kg) and a mass loading capture capacity of 41.29 lbs (18.727 kg).

Scour Testing

No scour testing was performed on the AtlanFilter since it is designed for offline installation.

Sincerely,

Richard S. Magee, Sc.D., P.E., BCEE

Behard & Magee

Executive Director

8. References

NJDEP 2021. New Jersey Department of Environmental Protection Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advanced Technology. Trenton, NJ. August 4, 2021.

NJDEP 2022. New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device. Trenton, NJ. January 14, 2022 (Updated April 25, 2023).

VERIFICATION APPENDIX

Introduction

- Manufacturer of the AtlanFilter®-ATLAN Stormwater Pty Ltd, 30 Technology Drive, Augustine Heights, QLD, 4300, AUSTRALIA. Phone: +61 1300 773 500. www.atlan.com.au
- MTD: The AtlanFilter cartridges (Models FIL-1.5 and FIL-3.0) design specifications are listed in **Table A-1**. These cartridges can be installed in any sized vault as long as the critical ratios of MTFR:EFTA, ESTA:EFTA, and WV:EFTA are met or exceeded.
- TSS Removal Rate: 80%
- The AtlanFilter is qualified for offline installation for the New Jersey Water Quality Design Storm (NJWQDS).

Detailed Specification

- The AtlanFilter cartridge has a mass loading capture capacity of 41.29 lbs (18.727 kg). The maximum inflow drainage area for the tested system is 0.069 acres.
- Prior to installation, Atlan provides contractors with detailed installation and assembly instructions and is available to consult on site during installation.
- The AtlanFilter Operations & Maintenance Guide may be found at: Atlan-Filter-Operation-Maintenance-Manual

Table A-1 AtlanFilter Model Design Specifications

Model	MFTR (L/s)	MFTR (gpm)	EFTA ¹ (m ²)	EFTA ¹ (ft ²)	ESTA ² (m ²)	ESTA ² (ft ²)	WV ³ (m ³)	WV ³ (gal)	MTFR:EFTA (L/s/m²)	ESTA:EFTA	WV:EFTA	Mass Load Cap- tured ⁴ (lbs)	ACRES ⁵
FIL-1.5 model (lower flow model)	1.5	23.78	0.419	4.51	2.088	22.48	1.044	275.8	3.580	2.492	2.492	20.64	0.034
FIL-3.0 model (tested model)	3	47.55	0.419	4.51	1.044	11.24	1.044	275.8	7.160	2.492	2.492	41.29	0.069

- 1. EFTA Effective Filtration Treatment Area The base area of the cartridge where water enters the media.
- 2. ESTA Effective Sedimentation Treatment Area The minimum area that must be provided for an individual filter cartridge.
- 3. WV Wet Volume The maximum water volume required by a single filter cartridge during a filtration run.
- **4. Mass Load Captured** Scaled from the FIL-3.0 model test results: Mass Load/MTFR = 41.29/3
- **5. ACRES** The drainage area based on the equation in the NJDEP Filtration protocol wherein drainage area is calculated by dividing the pounds of mass captured by 600 lb/acre.